(54.236.58.220) 您好!臺灣時間:2021/02/27 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林憲瑋
研究生(外文):Hsien-Wei Lin
論文名稱:工業用水壓力下工業廢水再生之最佳配置
論文名稱(外文):Optimal configuration of industrial reclaimed water under industrial water use pressure
指導教授:馬鴻文馬鴻文引用關係
口試委員:侯嘉洪陳起鳳
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:104
中文關鍵詞:MBRNFEDICDI再生水水處理技術資源採礦
DOI:10.6342/NTU201901811
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
全球受氣候變遷影響,導致水資源風險增加,因此各國皆致力於研究不同水管理策略,以降低所帶來的危害。然而台灣亦設立不同水管理方針,包含海水淡化與再生水,但目前再生水政策,對於進行工業廢水再生仍未有明確規劃。另外也透過台灣先前工業廢水再生推動經驗,歸納其失敗原因多為工業廢水再生成本過高,以及工廠用戶對工業廢水再生之水質信心度不足,因此若能解決此兩種因素,將有助於工業廢水再生的推動。

本研究將MBR (Membrane Bioreactor)、UF (Ultrafiltration)、NF (Nanofiltration)、RO (Reverse Osmosis)、EDI (Electrodeionization)、CDI (Capacitive Deionization),透過不同單元評估最佳技術組合,並以竹科廢水廠為示範說明。除探討最省成本之技術組合於竹科廢水水質適用性、所節省之成本外,亦分析若於廢水再生同時進行水中殘留金屬回收之價值,使水資源與金屬資源皆能重複利用,最後搭配本研究所構想水管理策略,於不同缺水風險下之調控方式。

結果顯示現階情境中最省成本之技術組合為CAS+UF+NF+RO,未來情境則為NF-CDI。並藉國外利用CAS+UF+NF+RO進行當地工業廢水再生,所收集之水質數據,其原廢水水質與竹科相近,且再生水質亦符合台灣再生水標準,因此竹科若利用相同技術則再生可行性高。另評估現階最省成本之技術組合與現今民生污水再生技術,於整年未缺水情況發生時,前者所節省之能耗成本約一億七千萬元台幣。然而於缺水最嚴重情況下,仍可節省約六千萬元。另外水再生過程中若同時進行殘留金屬資源採礦,一年最大潛勢之附加價值約三百五十萬。最後本研究構想之水資源管理策略,於缺水不同程度下,CAS+UF+NF+RO皆能進行分流調控達到水回收需求量,以降低水再生成本與增加工業用戶之用水信心兩項目標。
Climate change is the challenge in all the world, not only increase the water resource risk but other questions, thus many country endeavor to reserch the different water management to reduce the damage of climate change. However, it is also have some water management in Taiwan, including desalinating sea water and reclaimed wastewater, but it still does not have clearly reclaimed water policy in industrial wastewater. On the other hand, we can get the failure reason for the industrial wastewater recycling with experience in Taiwan before. The reason including the cost of reclaimed water and the confidence of reclaimed water to use in the process of the industry. Consequently, it is useful to promote the policy of the industry reclaimed water if resolve these question.

This study used different water technologies, including MBR, UF, NF, RO, EDI, and CDI to evaluate the best combination of units, and used the Hsinchu Science Park Wastewater Treatment Plant as a demonstration. Besides to discussing the appropriate of Hsinchu Science Park Wastewater Treatment Plant wastewater quality with the best wastewater treatment process and the cost savings of the energy by replacing the best technology combination, it also analyzes the added value of water resource recovery during wastewater regeneration, make both of the water and metal resources can be reuse. Finally, use the water management strategy of this study method, the two goals of reducing reclaimed water costs and increasing water confidence of industrial users will be achieved.

The results show that in the current situation, the best water treatment process is CAS+UF+NF+RO, while the future situation is NF-CDI. And the abroad industrial wastewater plant which using CAS+UF+NF+RO technology, its wastewater quality is similar to the Hsinchu Science Park Wastewater Treatment Plant, so it has the feasibility to use in Taiwan industry waster water plant. In addition, also compare the best water treatment process with the water management strategy of this study in the current situation and the Municipal Wastewater Treatment Plants, the CAS+UF+NF+RO process can save about 170 million NT when there is no water shortage throughout the year. However, in the worst of water shortage, the energy cost can still save about 60 million NT. And during the water regeneration process, the residual metal in wastewater can be mined of the maximum profit potential is about 3.5 million.

Finally, the water management strategy of this research also provided the method of control in a different water shortage situation, to reduce the cost of water recycling and increase the water confidence of industrial users.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1台灣水資源浩劫 3
2.1.1氣候變遷危機 3
2.1.2工業面臨風險 5
2.1.3政府水資源管理策略 6
2.2再生水發展 7
2.2.1國際再生水現況 7
2.2.2國內再生水之發展 10
2.2.3台灣民生污水廠之再生水推動 12
2.2.4台灣工業廢水廠之再生水推動 13
2.3水處理技術 16
2.3.1薄膜生物反應器(MBR) 17
2.3.2逆滲透(RO) 18
2.3.2納濾(NF) 19
2.3.3電透析去離子技術(EDI) 19
2.3.4電容去離子技術(CDI) 21
2.4再生水技術組合 25
2.5工業廢水再生潛在回收價值 33
2.5.1 工業廢水特性 33
2.5.2工業廢水之可回收資源 34
第三章 研究方法 41
3.1研究架構 41
3.2情境假設 43
3.3評估方法 47
3.4水資源管理策略 49
第四章 結果與討論 51
4.1不同技術參數結果 51
4.2最佳節能技術組合評估結果 59
4.3模廠案例介紹 – 新竹科學工業園區 64
4.4現階技術水質結果比較 67
4.5最佳技術之能耗節省成本 69
4.6金屬回收價值 75
4.6.1各技術回收之參數 75
4.6.2竹科金屬回收之計算 80
4.7水資源管理策略結果 86
第五章 結論與建議 91
參考文獻 92
Al-Harahsheh, M., Hussain, Y. A., Al-Zoubi, H., Batiha, M., & Hammouri, E. (2017). Hybrid precipitation-nanofiltration treatment of effluent pond water from phosphoric acid industry. Desalination, 406, 88-97.

AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15.

Alvarado, L., & Chen, A. (2014). Electrodeionization: principles, strategies and applications. Electrochimica Acta, 132, 583-597.

Andres, G. L., Mizugami, T., & Yoshihara, Y. (2017). Simulation of an electric behavior of the CDI system. Desalination, 419, 211-218.

Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?. Electrochimica Acta, 55(12), 3845-3856.

Arar, Ö., Yüksel, Ü., Kabay, N., & Yüksel, M. (2014). Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination, 342, 16-22.

Arsuaga, J. M., López-Muñoz, M. J., Aguado, J., & Sotto, A. (2008). Temperature, pH and concentration effects on retention and transport of organic pollutants across thin-film composite nanofiltration membranes. Desalination, 221(1-3), 253-258.

Badruddoza, A. Z. M., Shawon, Z. B. Z., Tay, W. J. D., Hidajat, K., & Uddin, M. S. (2013). Fe3O4.cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate polymers, 91(1), 322-332.

Baker, R. W., & Updated by Staff. (2000). Membrane technology. Kirk‐Othmer Encyclopedia of Chemical Technology.

Bernhard, M., Müller, J., & Knepper, T. P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water research, 40(18), 3419-3428.
Benetti, A. D. (2008). Water reuse: issues, technologies, and applications. Engenharia Sanitaria e Ambiental, 13(3), 247-248.

Bunani, S., Arda, M., & Kabay, N. (2018). Effect of operational conditions on post-treatment of RO permeate of geothermal water by using electrodeionization (EDI) method. Desalination, 431, 100-105.

Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.

Chen, J. C., Ng, W. J., Luo, R., Mu, S., Zhang, Z., Andersen, M., & Jørgensen, P. E. (2012). Membrane bioreactor process modeling and optimization: Ulu Pandan water reclamation plant. Journal of Environmental Engineering, 138(12), 1218-1226.

Chen, Z., Zhang, H., Wu, C., Luo, L., Wang, C., Huang, S., & Xu, H. (2018). A study of the effect of carbon characteristics on capacitive deionization (CDI) performance. Desalination, 433, 68-74.

Chiu, H. T., Lin, J. M., Cheng, T. H., & Chou, S. Y. (2011). Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozym. Express Polymer Letters, 5(4).

Choi, J., Dorji, P., Shon, H. K., & Hong, S. (2019). Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination, 449, 118-130

Choi, S., Chang, B., Kang, J. H., Diallo, M. S., & Choi, J. W. (2017). Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery. Journal of Membrane Science, 541, 580-586.

Choo, K. Y., Yoo, C. Y., Han, M. H., & Kim, D. K. (2017). Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization. Journal of Electroanalytical Chemistry, 806, 50-60.

Cleary, J., G., Tim, L., Al Goodman,, Paul, P., 2014. Trends in industrial water reuse. Pollut. Eng. 30–32
Colla, V., Branca, T. A., Rosito, F., Lucca, C., Vivas, B. P., & Delmiro, V. M. (2016). Sustainable reverse osmosis application for wastewater treatment in the steel industry. Journal of cleaner production, 130, 103-115.

Daraei, P., Madaeni, S. S., Ghaemi, N., Khadivi, M. A., Rajabi, L., Derakhshan, A. A., & Seyedpour, F. (2013). PAA grafting onto new acrylate-alumoxane.PES mixed matrix nano-enhanced membrane: Preparation, characterization and performance in dye removal. Chemical engineering journal, 221, 111-123.

Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2016). Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Safety and Environmental Protection, 101, 27-33.

Dabestani, S., Arcot, J., & Chen, V. (2017). Protein recovery from potato processing water: Pre-treatment and membrane fouling minimization. Journal of Food Engineering, 195, 85-96.

DEY, A., & TATE, J. (2005). Deionization. Part 1: A review of spiral-wound electrodeionization technology. Ultrapure water, 22(5), 20-29.

Diallo, M. S., Christie, S., Swaminathan, P., Johnson, J. H., & Goddard, W. A. (2005). Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environmental science & technology, 39(5), 1366-1377.

Drioli, E., & Giorno, L. (Eds.). (2009). Membrane operations: innovative separations and transformations. John Wiley & Sons.

El Diwani, G., El Rafie, S., El Ibiari, N. N., & El-Aila, H. I. (2007). Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination, 214(1-3), 200-214.

Falizi, N. J., Hacıfazlıoğlu, M. C., Parlar, İ., Kabay, N., Pek, T. Ö., & Yüksel, M. (2018). Evaluation of MBR treated industrial wastewater quality before and after desalination by NF and RO processes for agricultural reuse. Journal of water process engineering, 22, 103-108.

Gohil, G. S., Nagarale, R. K., Binsu, V. V., & Shahi, V. K. (2006). Preparation and characterization of monovalent cation selective sulfonated poly (ether ether ketone) and poly (ether sulfone) composite membranes. Journal of colloid and interface science, 298(2), 845-853.

Haghshenas, D. F., Darvishi, D., Rafieipour, H., Alamdari, E. K., & Salardini, A. A. (2009). A comparison between TEHA and Cyanex 923 on the separation and the recovery of sulfuric acid from aqueous solutions. Hydrometallurgy, 97(3-4), 173-179.

Hai, F. I., Alturki, A., Nguyen, N. L., Price, W. E., & Nghiem, L. D. (2016). Removal of trace organic contaminants by integrated membrane processes for water reuse applications.

He, D., Wong, C. E., Tang, W., Kovalsky, P., & Waite, T. D. (2016). Faradaic reactions in water desalination by batch-mode capacitive deionization. Environmental Science & Technology Letters, 3(5), 222-226.

Hospido, A., Sanchez, I., Rodriguez-Garcia, G., Iglesias, A., Buntner, D., Reif, R., ... & Feijoo, G. (2012). Are all membrane reactors equal from an environmental point of view?. Desalination, 285, 263-270

Huang, C., Xu, T., Zhang, Y., Xue, Y., & Chen, G. (2007). Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. Journal of Membrane Science, 288(1-2), 1-12.

Huang, Z., Lu, L., Cai, Z., & Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of hazardous materials, 302, 323-331.

Jo, H., Kim, K. H., Jung, M. J., Park, J. H., & Lee, Y. S. (2017). Fluorination effect of activated carbons on performance of asymmetric capacitive deionization. Applied Surface Science, 409, 117-123.

Jorgelina C. Pasqualino, Montse Meneses, and Francesc Castells.(2010).Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives

Katsou, E., Malamis, S., Cecchi, F., & Fatone, F. (2016). Fate and removal of trace metals.metalloids and fluoride from urban wastewater by membrane bioreactors: pilot and full-scale experiences. In Membrane Technologies for Water Treatment (pp.219-236). CRC Press.

Kaya, C., Sert, G., Kabay, N., Arda, M., Yüksel, M., & Egemen, Ö. (2015). Pre-treatment with nanofiltration (NF) in seawater desalination—Preliminary integrated membrane tests in Urla, Turkey. Desalination, 369, 10-17.

Kent, F. C., Farahbakhsh, K., Mahendran, B., Jaklewicz, M., Liss, S. N., & Zhou, H. (2011). Water reclamation using reverse osmosis: Analysis of fouling propagation given tertiary membrane filtration and MBR pretreatments. Journal of membrane science, 382(1-2), 328-338.

Khan, M. Z., Nizami, A. S., Rehan, M., Ouda, O. K. M., Sultana, S., Ismail, I. M., & Shahzad, K. (2017). Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia. Applied energy, 185, 410-420.

Kim, S., Lee, J., Kang, J. S., Jo, K., Kim, S., Sung, Y. E., & Yoon, J. (2015). Lithium recovery from brine using a λ-MnO2.activated carbon hybrid supercapacitor system. Chemosphere, 125, 50-56.

Kimura, K., Hara, H., & Watanabe, Y. (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination, 178(1-3), 135-140.

Klaysom, C., Marschall, R., Wang, L., Ladewig, B. P., & Lu, G. M. (2010). Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. Journal of Materials Chemistry, 20(22), 4669-4674.

Krzeminski, P., Leverette, L., Malamis, S., & Katsou, E. (2017). Membrane bioreactors–a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527, 207-227.

Lee, J. H., Bae, W. S., & Choi, J. H. (2010). Electrode reactions and adsorption.desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(1-3), 159-163.

Lee, K. S., Cho, Y., Choo, K. Y., Yang, S., Han, M. H., & Kim, D. K. (2018). Membrane-spacer assembly for flow-electrode capacitive deionization. Applied Surface Science, 433, 437-442.

Lee, L. Y., Ng, H. Y., Ong, S. L., Tao, G., Kekre, K., Viswanath, B., ... & Seah, H. (2009). Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant. Water research, 43(18), 4769-4777

Li, H., Zou, L., Pan, L., & Sun, Z. (2010). Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 75(1), 8-14.

Li, Y. H., Di, Z., Ding, J., Wu, D., Luan, Z., & Zhu, Y. (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water research, 39(4), 605-609.

Liang, P., Sun, X., Bian, Y., Zhang, H., Yang, X., Jiang, Y., ... & Huang, X. (2017). Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination, 420, 63-69

Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B. Q., Hong, H., ... & Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane science, 460, 110-125

Lopez, A. M., Williams, M., Paiva, M., Demydov, D., Do, T. D., Fairey, J. L., ... & Hestekin, J. A. (2017). Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse. Desalination, 409, 108-114.

Lu, C., & Chiu, H. (2006). Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 61(4), 1138-1145.

Mahmoud, A., & Hoadley, A. F. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water research, 46(10), 3364-3376.

Mao, S., Chen, L., Zhang, Y., Li, Z., Ni, Z., Sun, Z., & Zhao, R. (2019). Fractionation of mono-and divalent ions by capacitive deionization with nanofiltration membrane. Journal of Colloid and Interface Science.

Melnikov, S., Sheldeshov, N., Zabolotsky, V., Loza, S., & Achoh, A. (2017). Pilot scale complex electrodialysis technology for processing a solution of lithium chloride containing organic solvents. Separation and Purification Technology, 189, 74-81.

Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H. S., & Chae, S. R. (2017). Fouling in membrane bioreactors: an updated review. Water Research, 114, 151-180.

Michael-Kordatou, I., Michael, C., Duan, X., He, X., Dionysiou, D. D., Mills, M. A., & Fatta-Kassinos, D. (2015). Dissolved effluent organic matter: characteristics and potential implications in wastewater treatment and reuse applications. Water research, 77, 213-248.

Minhas, M. B., Jande, Y. A. C., & Kim, W. S. (2014). Combined reverse osmosis and constant-current operated capacitive deionization system for seawater desalination. Desalination, 344, 299-305.[A]

Minhas, M. B., Jande, Y. A., & Kim, W. S. (2014). Hybrid Reverse Osmosis‐Capacitive Deionization versus Two‐Stage Reverse Osmosis: A Comparative Analysis. Chemical Engineering & Technology, 37(7), 1137-1145.[B]

Mo, W., & Zhang, Q. (2013). Energy–nutrients–water nexus: integrated resource recovery in municipal wastewater treatment plants. Journal of environmental management, 127, 255-267.

Mohammad, A. W., Teow, Y. H., Ang, W. L., Chung, Y. T., Oatley-Radcliffe, D. L., & Hilal, N. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254.

Mondal, M., & De, S. (2016). Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chemical Engineering Journal, 285, 304-318.

Okano, K., Yamamoto, Y., Takano, H., Aketo, T., Honda, K., & Ohtake, H. (2016). A simple technology for phosphorus recovery using acid-treated concrete sludge. Separation and Purification Technology, 165, 173-178.

Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706-723.
Parlar, I., Hacıfazlıoğlu, M., Kabay, N., Pek, T. Ö., & Yüksel, M. (2018). Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering.

Pasqualino, J. C., Meneses, M., & Castells, F. (2011). Life cycle assessment of urban wastewater reclamation and reuse alternatives. Journal of Industrial Ecology, 15(1), 49-63.

Posadas, E., Bochon, S., Coca, M., García-González, M. C., García-Encina, P. A., & Muñoz, R. (2014). Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. Journal of applied phycology, 26(6), 2335-2345.

Postigo, C., de Alda, M. L., & Barceló, D. (2011). Evaluation of drugs of abuse use and trends in a prison through wastewater analysis. Environment international, 37(1), 49-55.

Qin, J. J., Kekre, K. A., Tao, G., Oo, M. H., Wai, M. N., Lee, T. C., ... & Seah, H. (2006). New option of MBR-RO process for production of NEWater from domestic sewage. Journal of Membrane Science, 272(1-2), 70-77.

Qiu, G., & Ting, Y. P. (2014). Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource technology, 170, 221-229.

Radjenovic, J., Petrovic, M., & Barceló, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and bioanalytical chemistry, 387(4), 1365-1377.

Reif, R., Suárez, S., Omil, F., & Lema, J. M. (2008). Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination, 221(1-3), 511-517.

Remillard, E. M., Shocron, A. N., Rahill, J., Suss, M. E., & Vecitis, C. D. (2018). A direct comparison of flow-by and flow-through capacitive deionization. Desalination, 444, 169-177.

Riley, S. M., Ahoor, D. C., Oetjen, K., & Cath, T. Y. (2018). Closed circuit desalination of O&G produced water: An evaluation of NF.RO performance and integrity. Desalination, 442, 51-61.

Rodríguez-Hernández, L., Esteban-García, A.L., Tejero, I., 2014. Comparison between a fixed bed hybrid membrane bioreactor and a conventional membrane bioreactor for municipal wastewater treatment: a pilot-scale study. Bioresour. Technol. 152,212–219.

Rossi, L., Lienert, J., & Larsen, T. A. (2009). Real-life efficiency of urine source separation. Journal of environmental management, 90(5), 1909-1917.

Ruimei, W., & Zaizhong, W. (1996). Preparation and Detection Technology of Ultrapure Water.

Sahar, E., Messalem, R., Cikurel, H., Aharoni, A., Brenner, A., Godehardt, M., ... & Ernst, M. (2011). Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water research, 45(16), 4827-4836.

Salamat, Y., & Hidrovo, C. H. (2018). A parametric study of multiscale transport phenomena and performance characteristics of capacitive deionization systems. Desalination, 438, 24-36.

Schaefer, A., Fane, A. G., & Waite, T. D. (Eds.). (2005). Nanofiltration: principles and applications. Elsevier.

Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. In Nanoscience and technology: a collection of reviews from nature Journals (pp. 337-346).

Shariati, F. P., Mehrnia, M. R., Salmasi, B. M., Heran, M., Wisniewski, C., & Sarrafzadeh, M. H. (2010). Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination, 250(2), 798-800.

Shen, X., & Chen, X. (2019). Membrane-free electrodeionization using phosphonic acid resin for nickel containing wastewater purification. Separation and Purification Technology, 223, 88-95.

Smara, A., Delimi, R., Chainet, E., & Sandeaux, J. (2007). Removal of heavy metals from diluted mixtures by a hybrid ion-exchange.electrodialysis process. Separation and Purification Technology, 57(1), 103-110.

Spoor, P. B., Ter Veen, W. R., & Janssen, L. J. J. (2001). Electrodeionization 2: The migration of nickel ions absorbed in a flexible ion-exchange resin. Journal of applied electrochemistry, 31(10), 1071-1077.

Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy & Environmental Science, 8(8), 2296-2319.

Tay, M. F., Liu, C., Cornelissen, E. R., Wu, B., & Chong, T. H. (2018). The feasibility of nanofiltration membrane bioreactor (NF-MBR)+ reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+ RO process. Water research, 129, 180-189.

Visvanathan, C., Aim, R. B., & Parameshwaran, K. (2000). Membrane separation bioreactors for wastewater treatment. Critical reviews in environmental science and technology, 30(1), 1-48.

Wang, H., & Ren, Z. J. (2014). Bioelectrochemical metal recovery from wastewater: a review. Water research, 66, 219-232.

Wang, J., Wang, S., & Jin, M. (2000). A study of the electrodeionization process—high-purity water production with a RO.EDI system. Desalination, 132(1-3), 349-352

Willauer, H. D., DiMascio, F., Hardy, D. R., Lewis, M. K., & Williams, F. W. (2011). Development of an electrochemical acidification cell for the recovery of CO2 and H2 from seawater. Industrial & Engineering Chemistry Research, 50(17), 9876-9882.

Wood, J., Gifford, J., Arba, J., & Shaw, M. (2010). Production of ultrapure water by continuous electrodeionization. Desalination, 250(3), 973-976.

Yamamoto, K. (2001). Membrane bioreactor: an advanced wastewater treatment.reclamation technology and its function in excess-sludge minimization. In Advances in Water and Wastewater Treatment Technology (pp. 229-237). Elsevier Science BV.

Yeon, K. H., Song, J. H., & Moon, S. H. (2004). A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant. Water research, 38(7), 1911-1921.

Yu, W., Xu, L., Graham, N., & Qu, J. (2014). Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling. Scientific reports,4, 6513.

Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water research, 128, 314-330

Zhao, C., Zhang, L., Ge, R., Zhang, A., Zhang, C., & Chen, X. (2019). Treatment of low-level Cu (II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology. Chemosphere, 217, 763-772.

Zhao, R., Van Soestbergen, M., Rijnaarts, H. H. M., Van der Wal, A., Bazant, M. Z., & Biesheuvel, P. M. (2012). Time-dependent ion selectivity in capacitive charging of porous electrodes. Journal of colloid and interface science, 384(1), 38-44.

Zheng, H., Gong, X., Yang, Y., Yang, J., Yang, X., & Wu, Z. (2017). Concentration of nitrogen as new energy source from wastewater by electrodeionization. Energy Procedia, 142, 1421-1426.

Zhi, S. L., & Zhang, K. Q. (2016). Hardness removal by a novel electrochemical method. Desalination, 381, 8-14.

內政部營建署.(2012).下水道誌-污水處理廠營運管理篇
內政部營建署.(2013).公共污水處理廠放流水回收再利用推動說明會資料
內政部營建署.(2017).前瞻基礎建設計畫-水環境建設再生水工程推動計畫
台灣世曦.(2017).再生水多元運用─產業園區應用實例
朱敬平.(2016).工業廢水再生利用技術
李信杰、黃志彬、袁如馨.(2005).沉浸式生物薄膜反應器之積垢特性探討
易俊宇.(2015).高科技產業用水回收率指標之研究
柳松、古國榜、李川.(2003).TiO2光催化處理廢水中貴重金屬的研究進展
徐毓蘭.(2004).工業廢水回收再利用策略探討
秦靜如.(2017).磁種凝絮與磁性分離技術在廢水處理之應用
張家源.(2017).污水工程
張廣智.(2016).再生水資源發展條例立法與推動現況
梁世旻.(2013).以生物薄膜法模擬食品廢水處理-BOD和COD濃度變化的影響
連昱涵.(2013).套裝式電容去離子(CDI)裝置去除氨氮之特性
陳汶斌.(2016).薄膜系統去除污染場址廢水中的汞及懸浮固體物
陳禹辰.(2017).奈米零價鐵負載於氧化鋁在重金屬廢水處理之研究
彭莉娟.(2009).微胞輔助超過濾對工業廢水中金屬離子之去除與結垢分析
黃汝賢.(2002).上流式厭氣污泥床(外部曝氣去除硫化物)處理製革廢水之性能
黃俞昌.(2012).新竹科學園區抗旱對策與經驗
黃紹謙、林志高.(2009).模型廠薄膜生物反應系統處理低碳氮比廢水之研究
楊惠玲、黃志彬.(2008).海水淡化程序RO膜生物性阻塞之特性及減緩
經濟部水利署.(2009).廢污水廠放流水再利用潛勢及推動策略
經濟部水利署.(2010).水再生利用經濟效益評估模式研究[B]
經濟部水利署.(2010).國際水再生利用推動經驗評析[A]
經濟部水利署.(2013).公共污水處理廠放流水回收再利用推動說明會資料
經濟部水利署.(2014).氣候變遷對水環境之衝擊與調適研究
經濟部水利署.(2015).年各標的用水量統計報告
經濟部水利署.(2016).再生水資源發展條例
經濟部水利署.(2017).產業穩定供水策略
經濟部水利署.(2018).再生水用於工業用途水質基礎建議值
廖宗盛.(2008).國際水價現況解析,自來水會刊第27卷第4期
盧明俊、何冠賢、王淑宜、徐哲敏.(2004).利用電-芬頓程序處理有機酸之廢水
陳冠傑.(2017).醋酸纖維素.三醋酸纖維素正滲透薄膜對有機物與無機物移除效率之研究
章日行、沈善鎰、唐政宏、許洋銘.(2017).不同物化技術處理實廠含銅、鎳重金屬廢水之研究
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔