(18.210.12.229) 您好!臺灣時間:2021/03/05 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林凱俞
研究生(外文):Kai-Yu Lin
論文名稱:順流式旋轉填充床對細懸浮微粒去除之效能評估
論文名稱(外文):Performance Evaluation of Fine Particles Removal in a Co-Current Flow Rotating Packed Bed
指導教授:蔣本基蔣本基引用關係
指導教授(外文):Pen-Chi Chiang
口試委員:顧洋陳奕宏林逸彬潘述元
口試委員(外文):Young KuYi-Hung ChenYi-Pin LinShu-Yuan Pan
口試日期:2019-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:205
中文關鍵詞:細懸浮微粒順流式旋轉填充床計算流體力學細懸浮微粒去除效率模式環境成本會計
DOI:10.6342/NTU201901344
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
21世紀是人類與空污的戰爭,尤以細懸浮微粒(PM2.5)為甚。許多研究已指出以逆流式旋轉填充床為主的超重力技術對去除細懸浮微粒具有較佳的效果,但較少研究著重於順流式旋轉填充床。本篇研究重點即在於調查超重力技術應用於細懸浮微粒的去除效能,將順流式旋轉填充床作為研究核心。首先應用計算流體力學(CFD)對順流式旋轉填充床內的流場模式進行分析,結合普遍常用的動量、質量、能量等統御方程式和紊流模型以評估流場速度及靜壓分布變化,其結果將作為輔助設置操作條件;接著於實驗室中以發電機為模擬之PM2.5產生源,評估順流式旋轉填充床於不同操作條件(超重力因子、液氣比)下對細懸浮微粒的去除效果,並推導出細懸浮微粒去除效率的相關性;同時為順流式旋轉填充床發展一套細懸浮微粒的去除效率模式,以填充材、液膜、液滴為三參數,找出各參數所對應的主導因子,再對實驗結果進行指數曲線擬合;最後以中油公司林園石化廠的煙囪(P070)作為假想的排放情境,與其他常用的除塵設備相比,對順流式旋轉填充床進行估算其環境成本會計以評估其用於去除細懸浮微粒下的經濟效益。
CFD結果發現隨轉速提升,順流式旋轉填充床之進液量雖能更有效地被離心力所分散至填充材區,但也有部分進液量被旋轉之填充材區所阻擋而反彈至空腔區;而在填充材區外圍的靜壓通常來的較大,這是由於液體進入填充材區後由離心力所推動造成的結果,這也意味著在一定轉速下,靜壓較大區域被認為主要是細懸浮微粒的去除區域。
實驗結果則發現隨轉速增加,去除效率也隨之提升;相同地,液氣比的提升也對去除效率具有正面影響。故順流式旋轉填充床在高轉速(1500 rpm)、高液氣比(L/G= 1.5)的操作條件下具有最大的PM2.5去除效率(99.75%),並且所對應出口氣體之PM2.5濃度為33.7 μg/m3,而藉由多重線性回歸模式所得之相關性結果則顯示液氣比對去除效率的影響較超重力因子大。
整體去除效率模式的結果則顯示順流式旋轉填充床中的去除效率以填充材為主、液膜為次、液滴則為輔。在操作條件為40 lpm的廢氣量、30 lpm的液體量下,使用微孔均勻沉降衝擊器(MOUDI)量測藉由順流式旋轉填充床處理後廢氣中不同粒徑的微粒質量濃度,而這將用於模式建立過程中常係數項的推導。填充材主導效率的機制中,以孔隙率、軸高、填充材厚度及液氣比為主導因子進行模式擬合。液膜主導效率的機制,以微粒粒徑與液膜厚度的比值影響為最,而這也是參考截留機制所建立的參數,同樣進行模式擬合;而液滴主導效率的機制中,則以布朗擴散作用較不明顯,截留作用較慣性衝擊所佔的影響較大,這也間接說明順流式旋轉填充床中的液滴主要以截留的方式來去除細懸浮微粒。
環境成本會計的估算結果顯示了每年所需的操作維護費用以文丘里濕式除塵器較高,而順流式旋轉填充床則具有相對較低的花費;以潛在效益而言,由於袋濾式集塵器及靜電集塵器去除細顆粒的效率較好,故具有較高的效益;若以淨現值而言,靜電集塵器與順流式旋轉填充床於假想排放情境下作為除塵設備是相當具有經濟可行性的。然而,值得注意的是,順流式旋轉填充床同時具有去除氣狀污染物的能力,因此其有可發展的潛力作為未來主要的空污防制設備。
The war between human beings and air pollution is in the 21st century, especially fine particulate matters (PM2.5). Much work has been done on studying that the counter-current flow rotating packed bed has a positive effect on fine particles removal, but little has considered the co-current flow rotating packed bed. This research investigates the performance of fine particles removal via high-gravity technology, carried out in a co-current flow rotating packed bed which was the core of this research. Computational fluid dynamics (CFD) was applied to analyze the flow field characteristics in the co-current flow rotating packed bed. The commonly used momentum, mass, energy equations, and turbulence models were combined to evaluate the variation of flow field velocity and static pressure distribution. The result would be used as an aid to set the operating conditions. Then, a generator was used as the simulated PM2.5 source in the laboratory, and the removal efficiency of fine particles using the co-current flow rotating packed bed under different operating conditions (high-gravity factor, liquid-to-gas ratio) was determined. In addition, the correlation of removal efficiency of fine particles was derived by the multiple linear regression. At the same time, a set of removal efficiency model of fine particles was developed for the co-current flow rotating packed bed. Taking packing, liquid film and droplets as three parameters, the dominant factors corresponding to each parameter were found out, and then the experimental results were fitted by the exponential curve. Finally, taking the chimney (P070) of Linyuan Petrochemical Plant of CPC Corporation as the hypothetical emission scenario, compared with other commonly used dedusting equipment, the environmental cost accounting of co-current flow rotating packed bed was estimated to evaluate its economic benefit in removing fine particles.
The results of CFD showed that with the increase of rotating speed, although the liquid inflow rate of co-current flow rotating packed bed could be more effectively dispersed to the packing zone by centrifugal force, some was blocked by the rotating packing zone and rebounded to the cavity zone. The static pressure around the packing zone was usually larger, which is caused by the centrifugal force after the liquid entered the packing zone. This also meant that at a certain speed, the larger static pressure area was considered to be mainly the area of fine particles removal.
The experimental results show that the removal efficiency increased with the increase of rotating speed, and the increase of liquid-to-gas ratio also had a positive impact on the removal efficiency. Therefore, the co-current flow rotating packed bed had the highest PM2.5 removal efficiency (99.75%) at high rotating speed (1500 rpm) and high liquid-to-gas ratio (L/G= 1.5), and the corresponding PM2.5 concentration of the outlet gas was 33.7 μg/m3. The correlation results obtained by the multiple linear regression model show that the effect of the liquid-to-gas ratio on removal efficiency was greater than that of high-gravity factor.
The results of the overall removal efficiency model show that the removal efficiency of the co-current flow rotating packed bed was mainly packing, liquid film was secondary, and liquid droplets were supplementary. Under the operating conditions of waste gas flow rate at 40 L/min and liquid flow rate at 30 L/min, the mass concentration of particles with different particle sizes in the waste gas treated by the co-current flow RPB was measured by the micro-orifice uniform deposition impactor (MOUDI), and this would be used to derive the constant coefficients in the process of model development. The mechanism of packing-dominated Efficiency was model fitting with the dominant factors of porosity, axis height, packing thickness, and liquid-to-gas ratio; the ratio of particle size to liquid film thickness had the greatest effect on the mechanism of film-dominated Efficiency. This was also the parameter established by reference to the interception mechanism, and the model fitting was also carried out. In the mechanism of droplet-dominated Efficiency, the Brownian diffusion effect was less obvious and the interception effect was greater than that of inertial impaction, which indirectly indicated that the droplets in the co-current flow RPB mainly remove fine particles by interception.
The estimated results of environmental cost accounting show that the annual operation and maintenance costs of venturi scrubber were higher than that of co-current flow RPB; in terms of potential benefits, the baghouse and electrostatic precipitator had higher efficiency in removing fine particles; in terms of net present value, the electrostatic precipitator and co-current flow RPB were economically feasible as dedusting equipment in the scenario of hypothetical emission. However, it is noteworthy that the co-current flow RPB has the ability to remove gaseous pollutants at the same time, so it has the potential to develop as the main air pollution control equipment in the future.
誌謝 i
中文摘要 ii
Abstract iv
Contents vii
List of Figures xi
List of Tables xvi
Oral Defense Comments xviii
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Core Problem of Fine Particles (PM2.5) Pollution 1
1.1.2 Various Types of Particulate Control Equipment 2
1.1.3 High-Gravity Rotating Packed Bed 4
1.2 Objectives 6
Chapter 2 Literature Review 7
2.1 Rotating Packed Bed, RPB 7
2.1.1 Types of RPB 9
2.1.2 Pressure drop 14
2.1.3 Effective Mass-Transfer Interface Area of RPB 18
2.1.4 Mass-Transfer Coefficient of Liquid Film 21
2.1.5 Mass-Transfer Coefficient of Gas Film 24
2.2 Computational Fluid Dynamics 26
2.2.1 Geometry Model 28
2.2.2 Liquid Flow Pattern 33
2.2.3 Optimization of Design Parameters in the RPB via CFD 38
2.3 Principle of PM Removal by RPB 40
2.3.1 Brownian Diffusion 42
2.3.2 Interception 44
2.3.3 Inertial Impaction 45
2.3.4 Key Performance Indicators 47
2.3.5 Performance of PM Removal in RPBs: Applications 48
2.4 Environmental Cost Accounting 51
2.4.1 Concept of Environmental Cost Accounting System 52
2.4.2 Case study 55
Chapter 3 Materials and Methods 58
3.1 Research Framework 58
3.2 Materials 59
3.2.1 Source of Agents 59
3.2.2 Co-Current Flow Rotating Packed Bed 63
3.3 Experiment Setup 66
3.3.1 MOUDI for Particles Separation in Particle-Laden Gas Flow 66
3.3.2 Filter Holders for Particles Collection 67
3.3.3 MOUDI for Particles Separation after dedusting by the RPB 69
3.3.4 Quality Control/Quality Assurance (QA/QC) 71
3.4 Experiment Methods 72
3.4.1 Operational Parameter 72
3.4.2 Experimental Procedure 75
3.4.3 Computational Fluid Dynamics 81
3.4.4 Environmental Cost Accounting 85
Chapter 4 Results and Discussion 89
4.1 Liquid Flow Characteristics 89
4.1.1 Geometrical Model and Mesh Generation 89
4.1.2 Mathematical Model 93
4.1.3 Effects of Rotating Speed on Distribution of Liquid Flow 98
4.1.4 Effects of Rotating Speed on Static Pressure 103
4.1.5 Summary 108
4.2 Effect of Fine Particle Removal 111
4.2.1 Particle mass size distribution 111
4.2.2 Effect of Liquid-to-Gas Ratio 116
4.2.3 Effect of Rotating Speed 121
4.2.4 Correlation for the Removal Efficiency of Fine Particles 126
4.2.5 Summary 130
4.3 Model of Overall Removal Efficiency 134
4.3.1 Background Assumptions 135
4.3.2 Model Derivation 139
4.3.3 Model Validation 148
4.3.4 Summary 150
4.4 Environmental Cost Accounting 153
4.4.1 Manufacturing-Process Assessment 153
4.4.2 Definition of Alternatives 156
4.4.3 Cost-Data Collection 159
4.4.4 Establishment of a Comparative Table 180
4.4.5 Summary 182
Chapter 5 Conclusions and Recommendations 184
5.1 Conclusions 184
5.2 Recommendations 186
REFERENCE 187
Appendix 198
1.Alberni Clayoquot Regional District, A. (2016). Particulate Matter. Retrieved from http://www.acrd.bc.ca/particulate-matter
2.Allen, D. T., & R., S. D. (2001). Green Engineering: Environmentally Conscious Design of Chemical Processes: Pearson Education.
3.Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:10.1016/0021-9991(92)90240-y
4.Burns, J. R., & Ramshaw, C. (1996). Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science, 51(8), 1347-1352. doi:10.1016/0009-2509(95)00367-3
5.Byeon, S.-H., Lee, B.-K., & Raj Mohan, B. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Separation and Purification Technology, 98, 221-229. doi:10.1016/j.seppur.2012.07.014
6.Chandra, A., Goswami, P. S., & Rao, D. P. (2005). Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing. Industrial & Engineering Chemistry Research, 44(11), 4051-4060. doi:10.1021/ie048815u
7.Chang, E. E., Pan, S. Y., Yang, L., Chen, Y. H., Kim, H., & Chiang, P. C. (2015). Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics. Waste Manag, 43, 283-292. doi:10.1016/j.wasman.2015.05.001
8.Chen, Y.-H., & Yuan, M.-H. (2018). Development of small-scale high-gravity lampblack purification equipment for night market catering vendors and its field effectiveness evaluation (2/3): Barbecue vendors. Retrieved from Ministry of Science and Technology:
9.Chen, Y.-S. (2011). Correlations of Mass Transfer Coefficients in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 50(3), 1778-1785. doi:10.1021/ie101251z
10.Chen, Y.-S., Lin, F.-Y., Lin, C.-C., Tai, C. Y.-D., & Liu, H.-S. (2006). Packing Characteristics for Mass Transfer in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 45(20), 6846-6853. doi:10.1021/ie060399l
11.Chen, Y.-S., & Liu, H.-S. (2002). Absorption of VOCs in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 41(6), 1583-1588. doi:10.1021/ie010752h
12.Chen, Y.-S., Tai, C. Y.-D., Chang, M.-H., & Liu, H.-S. (2006). Characteristics of Micromixing in a Rotating Packed Bed. Journal of the Chinese Institute of Chemical Engineers, 37(1), 63-69. doi:10.6967/JCICE.200601.0063
13.Cheng, Y., Zhang, X. J., & Nie, S. L. (2012). Numerical Simulation of Two-Phase Flow in a Rotating Packed Bed. Applied Mechanics and Materials, 233, 80-83. doi:10.4028/www.scientific.net/AMM.233.80
14.Choi, H. K., Lee, S. H., & Kim, S. S. (2009). The effect of activated carbon injection rate on the removal of elemental mercury in a particulate collector with fabric filters. Fuel Processing Technology, 90(1), 107-112. doi:10.1016/j.fuproc.2008.08.001
15.Chung, T. (2002). Computational Fluid Dynamics. Cambridge University Press,Cambridge.
16.Deng, X., Tian, D., & Luo, Y. (2010). Experimental study of micron dust removal using high-gravity rotating bed. Sulfuric Acid. Ind., 6, 16-20.
17.Englert, N. (2004). Fine particles and human health--a review of epidemiological studies. Toxicol Lett, 149(1-3), 235-242. doi:10.1016/j.toxlet.2003.12.035
18.EPA. (2013). Detection Method of Fine Particles (PM2.5) in Discharge Pipeline (in Chinese). In R. O. C. Executive Yuan (Ed.), (pp. 26).
19.EPA. (2018). General Explanation on the Amendment of Fees for Air Pollution Control from Stationary Pollution Sources (in Chinese). (1070050299).
20.Fan, F., Yang, L., Yan, J., & Yuan, Z. (2009). Numerical analysis of water vapor nucleation on PM2.5 from municipal solid waste incineration. Chemical Engineering Journal, 146(2), 259-265. doi:10.1016/j.cej.2008.06.009
21.Flagan, R. C., & Seinfeld, J. H. (1988). Removal of Particles from Gas Streams (Vol. Fundamentals of Air Pollution Engineering). Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
22.Fu, J., Sheng, D., & Lu, X. (2015a). Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone. Catalysts, 6(1). doi:10.3390/catal6010006
23.Fu, J., Sheng, D., & Lu, X. (2015b). Research on removal of fine particles by cross-flow rotating packed bed. Chemical Industry and Engineering Progress, 34(3), 680-694.
24.Gale, R., & Stokoe, P. (2001). Environmental Cost Accounting and Business Strategy. In (pp. 119-136).
25.Garcia-Nieto, P. J. (2006). Study of the evolution of aerosol emissions from coal-fired power plants due to coagulation, condensation, and gravtitational settling and health impact. J Environ Manage, 79(4), 372-382. doi:10.1016/j.jenvman.2005.08.006
26.Guo, F. (1996). Characteristics of hydrodynamics and mass transfer in cross flow rotating packed bed. (Ph.D. dissertation), Beijing University,
27.Guo, F., Zheng, C., Guo, K., Feng, Y., & Gardner, N. C. (1997). Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chemical Engineering Science, 52(21-22), 3853-3859. doi:10.1016/s0009-2509(97)00229-7
28.Guo, K. (1996). A study on liquid flowing inside the Higce rotor. (Ph. D. dissertation), Beijing University,
29.Guo, T.-Y., Cheng, K.-P., Wen, L.-X., Andersson, R., & Chen, J.-F. (2017). Three-Dimensional Simulation on Liquid Flow in a Rotating Packed Bed Reactor. Industrial & Engineering Chemistry Research, 56(28), 8169-8179. doi:10.1021/acs.iecr.7b01759
30.Guo, T.-Y., Shi, X., Chu, G.-W., Xiang, Y., Wen, L.-X., & Chen, J.-F. (2016). Computational Fluid Dynamics Analysis of the Micromixing Efficiency in a Rotating-Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 55(17), 4856-4866. doi:10.1021/acs.iecr.6b00213
31.Hakobyan, N. A. (2015). Introduction to Basics of Submicron Aerosol Particles Filtration Theory via Ultrafine Fiber Media. Armenian Journal of Physics, 8(3), 140-151.
32.Hassan-Beck, H. (1997). Process Intensification: Mass Transfer and Pressure Drop for Countercurrent Rotating Packed Beds. (Doctor), University of Newcastle-upon-Tyne, (L5944)
33.Hinds, W. C. (1999). Aerosol Technology: Properties, behavior, and measurement of airborne particles, 2nd Edition (Vol. Chemical and Environmental Health and Safety): John Wiley & Sons, Inc.
34.Hu, X.-P., Tian, D.-L., & Deng, X.-H. (2009). Experimental research on removing of micron scale dust by high gravity rotating packed bed (in Chinese). Mod. Chem. Ind., 29, 69-74.
35.Huang, D.-b., Deng, X.-h., Tian, D.-l., & Hu, X. (2011). ExperimentsI research on removal of micron level dust by high gravity rotating packed bed (in Chinese). Chem. Eng., 39, 42-45.
36.Huang, T.-H. (2018). Performance Evaluation of Fine Particle Removal from Air Emissions of the E-waste Combustion Process via a Rotating Packed Bed. National Taiwan University,
37.J., Z. (1996). Experiment and modelling of liquid flow and mass transfer in rotating packed bed. (Ph.D. dissertation), Beijing University,
38.Jung, C. H., & Lee, K. W. (1998). Filtration of Fine Particles by Multiple Liquid Droplet and Gas Bubble Systems. Aerosol Science and Technology, 29(5), 389-401. doi:10.1080/02786829808965578
39.Kelleher, T., & Fair, J. R. (1996). Distillation Studies in a High-Gravity Contactor. Industrial & Engineering Chemistry Research, 35(12), 4646-4655. doi:10.1021/ie950662a
40.Keyvani, M., & Gardner, N. C. (1988). OPERATING CHARACTERISTICS OF ROTATING BEDS. doi:10.2172/10172400
41.Kim, H. T., Jung, C. H., Oh, S. N., & Lee, K. W. (2001). Particle Removal Efficiency of Gravitational Wet Scrubber Considering Diffusion, Interception, and Impaction. Environmental Engineering Science, 18(2), 125-136. doi:10.1089/10928750151132357
42.Kuo, C.-P., TsaiI, C.-H., & Chang, C.-T. (2017). Using CMAQ Modeling for Evaluation of Emission Impact on Environmental PM2.5 Level from Coal-Fired Boilers (in Chinese). Retrieved from
43.Lamb, H. (1993). Hydrodynamics: Cambridge university press.
44.Lee, K. W., & Liu, B. Y. H. (1980). On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters. Journal of the Air Pollution Control Association, 30(4), 377-381. doi:10.1080/00022470.1980.10464592
45.Letmathe, P., & Doost, R. K. (2000). Environmental cost accounting and auditing. Managerial Auditing Journal, 15(8), 424-431. doi:10.1108/02686900010354709
46.Li, J., & Liu, Y. (2007). Mechanism and evaluation of dedusting by high-gravity method (in Chinese). . Chem. Prod. Technol., 14, 35-37.
47.Li, J. M. (2004). Concept and Implementation of the Cost Assessment of the Environment. Industrial Development Bureau, MOEA
48.Li, W., Liu, H., Li, S., Li, W., Chen, Y., Gao, J., & Cao, Y. (2018). Removal of hydrophobic volatile organic compounds with sodium hypochlorite and surfactant in a co-current rotating packed bed. J Environ Sci (China), 64, 190-196. doi:10.1016/j.jes.2016.12.009
49.Li, W., Wu, W., Zou, H., Chu, G., Shao, L., & Chen, J. (2009). Process Intensification of VOC Removal from High Viscous Media by Rotating Packed Bed. Chinese Journal of Chemical Engineering, 17(3), 389-393. doi:10.1016/s1004-9541(08)60221-9
50.Li, Y., Ji, J., Xu, Z., Wang, G., Li, X., & Liu, X. (2013). Pressure Drop Model on Rotating Zigzag Bed as a New High-Gravity Technology. Industrial & Engineering Chemistry Research, 52(12), 4638-4649. doi:10.1021/ie301207e
51.Li, Y., Liu, Y., Zhang, L., Su, Q., & Jin, G. (2010). Absorption of NOx into Nitric Acid Solution in Rotating Packed Bed. Chinese Journal of Chemical Engineering, 18(2), 244-248. doi:10.1016/s1004-9541(08)60349-3
52.Li, Z.-Y., Dong, K., Liang, Y., Zhang, L., Sun, B., Chu, G.-W., . . . Chen, J.-F. (2017). Study on the removal of fine particles by using water in a rotating packed bed. The Canadian Journal of Chemical Engineering, 95(6), 1063-1068. doi:10.1002/cjce.22768
53.Liang-Liang Zhang, Jie-Xin Wang, Yang Xiang, Xiao-Fei Zeng, & Chen, J.-F. (2011). Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor MassTransfer Study. Industrial & Engineering Chemistry Research, 50 (11), 6957-6964. doi:10.1021/ie1025979
54.Licht, W. (1980). Air Control Engineering —— Basic Calculations for Particulate Collection. New York: Marcel Dekker Inc.
55.Licht, W. (1988). Air Pollution Control Engineering: Basic Calculations for Particulate Collection, 2nd ed. New York: Marcel Dekker.
56.Lin, C.-C., Ho, T.-J., & Liu, W.-T. (2002). Distillation in a Rotating Packed Bed. Journal of Chemical Engineering of Japan, 35(12), 1298-1304. doi:10.1252/jcej.35.1298
57.Lin, C.-C., & Jian, G.-S. (2007). Characteristics of a rotating packed bed equipped with blade packings. Separation and Purification Technology, 54(1), 51-60. doi:10.1016/j.seppur.2006.08.006
58.Lin, C.-C., Liu, W.-T., & Tan, C.-S. (2003). Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 42(11), 2381-2386. doi:10.1021/ie020669%2B
59.Lin, C.-C., & Su, Y.-R. (2008). Performance of rotating packed beds in removing ozone from gaseous streams. Separation and Purification Technology, 61(3), 311-316. doi:10.1016/j.seppur.2007.11.001
60.Lin, C.-C., Wei, T.-Y., Hsu, S.-K., & Liu, W.-T. (2006). Performance of a pilot-scale cross-flow rotating packed bed in removing VOCs from waste gas streams. Separation and Purification Technology, 52(2), 274-279. doi:10.1016/j.seppur.2006.05.003
61.Lin, C. S. (2008). Material Flow Cost Accounting of Coal-Fired Power Generation Facilities -An Example of the Linkou Power Plant. (Doctor), National Taipei University,
62.Lin, K. L. (2006). The Assessment of The Environmental Cost of Petrochemical Industry in Taiwan. (Master), National Cheng Kung University,
63.Liu, H.-S., Lin, C.-C., Wu, S.-C., & Hsu, H.-W. (1996). Characteristics of a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 35(10), 3590-3596. doi:10.1021/ie960183r
64.Liu, Y.-Z. (2009). High Gravity Chemical Process and Technology: National Defense Industry Press.
65.Liu, Y., Luo, Y., Chu, G.-W., Luo, J.-Z., Arowo, M., & Chen, J.-F. (2017). 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing. Chemical Engineering Science, 170, 365-377. doi:10.1016/j.ces.2017.01.033
66.Llerena-Chavez, H., & Larachi, F. (2009). Analysis of flow in rotating packed beds via CFD simulations—Dry pressure drop and gas flow maldistribution. Chemical Engineering Science, 64(9), 2113-2126. doi:10.1016/j.ces.2009.01.019
67.Lu, X., Xie, P., Ingham, D. B., Ma, L., & Pourkashanian, M. (2018). A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds. Chemical Engineering Science, 189, 123-134. doi:10.1016/j.ces.2018.04.074
68.Marple, V. A., Rubow, K. L., & Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Science and Technology, 14(4), 434-446. doi:10.1080/02786829108959504
69.Martínez, E. L., Jaimes, R., Gomez, J. L., & Filho, R. M. (2012). CFD Simulation of Three-Dimensional Multiphase Flow in a Rotating Packed Bed. Computer Aided Chemical Engineering, 30, 1158-1162. doi:10.1016/B978-0-444-59520-1.50090-7
70.Menter, F. R. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. , . Paper presented at the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference.
71.Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149
72.Munjal, S., Dudukovć, M. P., & Ramachandran, P. (1989). Mass-transfer in rotating packed beds—I. Development of gas—liquid and liquid—solid mass-transfer correlations. Chemical Engineering Science, 44(10), 2245-2256. doi:10.1016/0009-2509(89)85159-0
73.Munjal, S., Duduković, M. P., & Ramachandran, P. (1989). Mass-transfer in rotating packed beds—II. Experimental results and comparison with theory and gravity flow. Chemical Engineering Science, 44(10), 2257-2268. doi:10.1016/0009-2509(89)85160-7
74.Mussatti, D. (2002). Wet Scrubbers for Particulate Matter. (EPA/452/B-02-001). U.S. : Environmental Protection Agency
75.Nakamura, H., Deguchi, N., & Watano, S. (2015). Development of tapered rotating fluidized bed granulator for increasing yield of granules. Advanced Powder Technology, 26(2), 494-499. doi:10.1016/j.apt.2014.12.003
76.Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996). Diesel particulate emission control. Fuel Processing Technology, 47(1), 1-69. doi:Doi 10.1016/0378-3820(96)01002-8
77.Ouyang, Y., Xiang, Y., Gao, X.-Y., Li, W.-L., Zou, H.-K., Chu, G.-W., & Chen, J.-F. (2018). Micromixing efficiency in a rotating packed bed with non-Newtonian fluid. Chemical Engineering Journal, 354, 162-171. doi:10.1016/j.cej.2018.07.141
78.Ouyang, Y., Zou, H.-K., Gao, X.-Y., Chu, G.-W., Xiang, Y., & Chen, J.-F. (2018). Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed. Chemical Engineering and Processing - Process Intensification, 123, 185-194. doi:10.1016/j.cep.2017.09.005
79.Pan, S.-Y., Adhikari, R., Chen, Y.-H., Li, P., & Chiang, P.-C. (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO 2 fixation via accelerated carbonation. Journal of Cleaner Production, 137, 617-631. doi:10.1016/j.jclepro.2016.07.112
80.Pan, S.-Y., Chang, E. E., & Chiang, P.-C. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12(5), 770-791. doi:10.4209/aaqr.2012.06.0149
81.Pan, S.-Y., Wang, P., Chen, Q., Jiang, W., Chu, Y.-H., & Chiang, P.-C. (2017). Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications. Journal of Cleaner Production, 149, 540-556. doi:10.1016/j.jclepro.2017.02.108
82.Pan, S. Y., Chen, Y. H., Chen, C. D., Shen, A. L., Lin, M., & Chiang, P. C. (2015). High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry. Environ Sci Technol, 49(20), 12380-12387. doi:10.1021/acs.est.5b02210
83.Pei, S.-L., Pan, S.-Y., Li, Y.-M., Xiang-Gao, P., & Chiang, P.-C. (2018). Performance evaluation of integrated air pollution control with alkaline waste valorization via high-gravity technology. Journal of the Taiwan Institute of Chemical Engineers, 87, 165-173. doi:10.1016/j.jtice.2018.03.032
84.Pei, S. L., Pan, S. Y., Li, Y. M., & Chiang, P. C. (2017). Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed. Environ Sci Technol, 51(18), 10674-10681. doi:10.1021/acs.est.7b00708
85.Pham, D. A., Lim, Y.-I., Jee, H., Ahn, E., & Jung, Y. (2015). Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal. Chemical Engineering Science, 132, 259-270. doi:10.1016/j.ces.2015.04.009
86.Qian, J., & Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331, 59-80. doi:10.1017/s0022112096003722
87.Qian, Z., Chen, Q., & Grossmann, I. E. (2017). Optimal synthesis of rotating packed bed reactor. Computers & Chemical Engineering, 105, 152-160. doi:10.1016/j.compchemeng.2017.02.026
88.Ramshaw, C., & Mallinson, R. H. (1981). United States Patent No. US4283255A.
89.Rao, D. P., Bhowal, A., & Goswami, P. S. (2004). Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial & Engineering Chemistry Research, 43(4), 1150-1162. doi:10.1021/ie030630k
90.Sang, L., Luo, Y., Chu, G.-W., Zhang, J.-P., Xiang, Y., & Chen, J.-F. (2017). Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study. Chemical Engineering Science, 158, 429-438. doi:10.1016/j.ces.2016.10.044
91.Sargent, R. G. (1998). Verification And Validation Of Simulation Models. Electrical Engineering and Computer Science, 7.
92.SAS. (2019). Statistics Knowledge Portal ─ Correlation. Retrieved from https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-correlation.html
93.Sawistowski, H. (1957). Flooding velocities in packed columns operating at reduced pressures. Chemical Engineering Science, 6(3), 138-140. doi:10.1016/0009-2509(57)85007-6
94.Schaltegger, S. (2017). Contemporary Environmental Accounting.
95.Shi, X., Xiang, Y., Wen, L.-X., & Chen, J.-F. (2013). CFD analysis of liquid phase flow in a rotating packed bed reactor. Chemical Engineering Journal, 228, 1040-1049. doi:10.1016/j.cej.2013.05.081
96.Singh, S. P., Wilson, J. H., Counce, R. M., Villiersfisher, J. F., Jennings, H. L., Lucero, A. J., . . . Elliott, M. G. (1992). Removal of Volatile Organic-Compounds from Groundwater Using a Rotary Air Stripper. Industrial & Engineering Chemistry Research, 31(2), 574-580. doi:DOI 10.1021/ie00002a019
97.Song, Y., Chen, J., Fu, J., & Chen, J. (2003). Research on Particle Removal Efficiency of the Rotating Packed Bed. Chemical Industry and Engineering Progress, 22, 499.
98.Sun, L., Wu, Q., Liao, K., Yu, P., Cui, Q., Rui, Q., & Wang, D. (2016). Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere, 144, 2392-2400. doi:10.1016/j.chemosphere.2015.11.028
99.Sung, W.-D., & Chen, Y.-S. (2012). Characteristics of a rotating packed bed equipped with blade packings and baffles. Separation and Purification Technology, 93, 52-58. doi:10.1016/j.seppur.2012.03.033
100.Tennekes, H., & Lumley, J. L. (1972). A First Course in Turbulence (Vol. The MIT Press). Cambridge, MA.
101.Theodore, L. (2008). Air Pollution Control Equipment Calculations.
102.Tung, H.-H., & Mah, R. S. H. (1985). Modeling Liquid Mass Transfer in Higee Separation Process. Chemical Engineering Communications, 39(1-6), 147-153. doi:10.1080/00986448508911667
103.USEPA. (1996). An Introduction to Environmental accounting as a Business Management Tool: Key Concepts and Terms. Washington,D.C.
104.USEPA. (2016a). Lesson 4 ESP Design Review. (2.0-2/98).
105.USEPA. (2016b). Lesson 7 Industrial Applications of Fabric Filters. (2.0-3/95).
106.Wang, G. Q., Xu, Z. C., Yu, Y. L., & Ji, J. B. (2008). Performance of a rotating zigzag bed—A new HIGEE. Chemical Engineering and Processing: Process Intensification, 47(12), 2131-2139. doi:10.1016/j.cep.2007.11.001
107.Wenzel, D., & Górak, A. (2018). Review and analysis of micromixing in rotating packed beds. Chemical Engineering Journal, 345, 492-506. doi:10.1016/j.cej.2018.03.109
108.Wilcox., D. C. (2006). Turbulence Modeling for CFD, 3rd ed. La Cañada, CA: DCW Industries, Inc.
109.Xie, P., Lu, X., Yang, X., Ingham, D., Ma, L., & Pourkashanian, M. (2017). Characteristics of liquid flow in a rotating packed bed for CO 2 capture: A CFD analysis. Chemical Engineering Science, 172, 216-229. doi:10.1016/j.ces.2017.06.040
110.Xu, C., Jiao, W., Liu, Y., Guo, L., Yuan, Z., & Zhang, Q. (2014). Effects of airflow field on droplets diameter inside the corrugated packing of a rotating packed bed. China Petroleum Processing and Petrochemical Technology, 16(4), 38-46.
111.Yang, K., Chu, G., Zou, H., Sun, B., Shao, L., & Chen, J.-F. (2011). Determination of the effective interfacial area in rotating packed bed. Chemical Engineering Journal, 168(3), 1377-1382. doi:10.1016/j.cej.2011.01.100
112.Yang, W., Wang, Y., Chen, J., & Fei, W. (2010). Computational fluid dynamic simulation of fluid flow in a rotating packed bed. Chemical Engineering Journal, 156(3), 582-587. doi:10.1016/j.cej.2009.04.013
113.Yang, Y.-C., Ouyang, Y., Zhang, N., Yu, Q.-J., & Arowo, M. (2019). A review on computational fluid dynamic simulation for rotating packed beds. Journal of Chemical Technology & Biotechnology, 94(4), 1017-1031. doi:10.1002/jctb.5880
114.Yang, Y., Xiang, Y., Chu, G., Zou, H., Luo, Y., Arowo, M., & Chen, J.-F. (2015). A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed. Chemical Engineering Science, 138, 244-255. doi:10.1016/j.ces.2015.07.044
115.Yang, Y., Xiang, Y., Chu, G., Zou, H., Sun, B., Arowo, M., & Chen, J.-F. (2016). CFD modeling of gas–liquid mass transfer process in a rotating packed bed. Chemical Engineering Journal, 294, 111-121. doi:10.1016/j.cej.2016.02.054
116.Yang, Y., Xiang, Y., Li, Y., Chu, G., Zou, H., Arowo, M., & Chen, J. (2015). 3D CFD modelling and optimization of single-phase flow in rotating packed beds. The Canadian Journal of Chemical Engineering, 93(6), 1138-1148. doi:10.1002/cjce.22183
117.Zhang, L., Ninomiya, Y., & Yamashita, T. (2006). Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel, 85(10-11), 1446-1457. doi:10.1016/j.fuel.2006.01.009
118.Zhang, Y., Liu, L., & Liu, Y. (2003). Experimental study on flue gas dedusting by hypergravity rotary bed (in Chinese). Environ. Eng., 21, 42-58.
119.Zhang, Y., Yin, Y., Chen, Y., Gao, G., Yu, P., Luo, J., & Jiang, Y. (2003). PCAS--a precomputed proteome annotation database resource. BMC Genomics, 4(1), 42. doi:10.1186/1471-2164-4-42
120.Zhao, H., Shao, L., & Chen, J.-F. (2010). High-gravity process intensification technology and application. Chemical Engineering Journal, 156(3), 588-593. doi:10.1016/j.cej.2009.04.053
121.Zheng, X.-H., Chu, G.-W., Kong, D.-J., Luo, Y., Zhang, J.-P., Zou, H.-K., . . . Chen, J.-F. (2016). Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. Chemical Engineering Journal, 285, 236-242. doi:10.1016/j.cej.2015.09.083
122.Zhu, G. (2017). Introduction, Advancement and Proficiency of Autodesk CFD (in Chinese). China: Machinery Industry Press.
123.Zou, H., Sheng, M., Sun, X., Ding, Z., Arowo, M., Luo, Y., . . . Sun, B. (2017). Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed. Fuel, 204, 47-53. doi:10.1016/j.fuel.2017.05.017
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔