|
1.Alberni Clayoquot Regional District, A. (2016). Particulate Matter. Retrieved from http://www.acrd.bc.ca/particulate-matter 2.Allen, D. T., & R., S. D. (2001). Green Engineering: Environmentally Conscious Design of Chemical Processes: Pearson Education. 3.Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:10.1016/0021-9991(92)90240-y 4.Burns, J. R., & Ramshaw, C. (1996). Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science, 51(8), 1347-1352. doi:10.1016/0009-2509(95)00367-3 5.Byeon, S.-H., Lee, B.-K., & Raj Mohan, B. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Separation and Purification Technology, 98, 221-229. doi:10.1016/j.seppur.2012.07.014 6.Chandra, A., Goswami, P. S., & Rao, D. P. (2005). Characteristics of Flow in a Rotating Packed Bed (HIGEE) with Split Packing. Industrial & Engineering Chemistry Research, 44(11), 4051-4060. doi:10.1021/ie048815u 7.Chang, E. E., Pan, S. Y., Yang, L., Chen, Y. H., Kim, H., & Chiang, P. C. (2015). Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics. Waste Manag, 43, 283-292. doi:10.1016/j.wasman.2015.05.001 8.Chen, Y.-H., & Yuan, M.-H. (2018). Development of small-scale high-gravity lampblack purification equipment for night market catering vendors and its field effectiveness evaluation (2/3): Barbecue vendors. Retrieved from Ministry of Science and Technology: 9.Chen, Y.-S. (2011). Correlations of Mass Transfer Coefficients in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 50(3), 1778-1785. doi:10.1021/ie101251z 10.Chen, Y.-S., Lin, F.-Y., Lin, C.-C., Tai, C. Y.-D., & Liu, H.-S. (2006). Packing Characteristics for Mass Transfer in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 45(20), 6846-6853. doi:10.1021/ie060399l 11.Chen, Y.-S., & Liu, H.-S. (2002). Absorption of VOCs in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 41(6), 1583-1588. doi:10.1021/ie010752h 12.Chen, Y.-S., Tai, C. Y.-D., Chang, M.-H., & Liu, H.-S. (2006). Characteristics of Micromixing in a Rotating Packed Bed. Journal of the Chinese Institute of Chemical Engineers, 37(1), 63-69. doi:10.6967/JCICE.200601.0063 13.Cheng, Y., Zhang, X. J., & Nie, S. L. (2012). Numerical Simulation of Two-Phase Flow in a Rotating Packed Bed. Applied Mechanics and Materials, 233, 80-83. doi:10.4028/www.scientific.net/AMM.233.80 14.Choi, H. K., Lee, S. H., & Kim, S. S. (2009). The effect of activated carbon injection rate on the removal of elemental mercury in a particulate collector with fabric filters. Fuel Processing Technology, 90(1), 107-112. doi:10.1016/j.fuproc.2008.08.001 15.Chung, T. (2002). Computational Fluid Dynamics. Cambridge University Press,Cambridge. 16.Deng, X., Tian, D., & Luo, Y. (2010). Experimental study of micron dust removal using high-gravity rotating bed. Sulfuric Acid. Ind., 6, 16-20. 17.Englert, N. (2004). Fine particles and human health--a review of epidemiological studies. Toxicol Lett, 149(1-3), 235-242. doi:10.1016/j.toxlet.2003.12.035 18.EPA. (2013). Detection Method of Fine Particles (PM2.5) in Discharge Pipeline (in Chinese). In R. O. C. Executive Yuan (Ed.), (pp. 26). 19.EPA. (2018). General Explanation on the Amendment of Fees for Air Pollution Control from Stationary Pollution Sources (in Chinese). (1070050299). 20.Fan, F., Yang, L., Yan, J., & Yuan, Z. (2009). Numerical analysis of water vapor nucleation on PM2.5 from municipal solid waste incineration. Chemical Engineering Journal, 146(2), 259-265. doi:10.1016/j.cej.2008.06.009 21.Flagan, R. C., & Seinfeld, J. H. (1988). Removal of Particles from Gas Streams (Vol. Fundamentals of Air Pollution Engineering). Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 22.Fu, J., Sheng, D., & Lu, X. (2015a). Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone. Catalysts, 6(1). doi:10.3390/catal6010006 23.Fu, J., Sheng, D., & Lu, X. (2015b). Research on removal of fine particles by cross-flow rotating packed bed. Chemical Industry and Engineering Progress, 34(3), 680-694. 24.Gale, R., & Stokoe, P. (2001). Environmental Cost Accounting and Business Strategy. In (pp. 119-136). 25.Garcia-Nieto, P. J. (2006). Study of the evolution of aerosol emissions from coal-fired power plants due to coagulation, condensation, and gravtitational settling and health impact. J Environ Manage, 79(4), 372-382. doi:10.1016/j.jenvman.2005.08.006 26.Guo, F. (1996). Characteristics of hydrodynamics and mass transfer in cross flow rotating packed bed. (Ph.D. dissertation), Beijing University, 27.Guo, F., Zheng, C., Guo, K., Feng, Y., & Gardner, N. C. (1997). Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chemical Engineering Science, 52(21-22), 3853-3859. doi:10.1016/s0009-2509(97)00229-7 28.Guo, K. (1996). A study on liquid flowing inside the Higce rotor. (Ph. D. dissertation), Beijing University, 29.Guo, T.-Y., Cheng, K.-P., Wen, L.-X., Andersson, R., & Chen, J.-F. (2017). Three-Dimensional Simulation on Liquid Flow in a Rotating Packed Bed Reactor. Industrial & Engineering Chemistry Research, 56(28), 8169-8179. doi:10.1021/acs.iecr.7b01759 30.Guo, T.-Y., Shi, X., Chu, G.-W., Xiang, Y., Wen, L.-X., & Chen, J.-F. (2016). Computational Fluid Dynamics Analysis of the Micromixing Efficiency in a Rotating-Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 55(17), 4856-4866. doi:10.1021/acs.iecr.6b00213 31.Hakobyan, N. A. (2015). Introduction to Basics of Submicron Aerosol Particles Filtration Theory via Ultrafine Fiber Media. Armenian Journal of Physics, 8(3), 140-151. 32.Hassan-Beck, H. (1997). Process Intensification: Mass Transfer and Pressure Drop for Countercurrent Rotating Packed Beds. (Doctor), University of Newcastle-upon-Tyne, (L5944) 33.Hinds, W. C. (1999). Aerosol Technology: Properties, behavior, and measurement of airborne particles, 2nd Edition (Vol. Chemical and Environmental Health and Safety): John Wiley & Sons, Inc. 34.Hu, X.-P., Tian, D.-L., & Deng, X.-H. (2009). Experimental research on removing of micron scale dust by high gravity rotating packed bed (in Chinese). Mod. Chem. Ind., 29, 69-74. 35.Huang, D.-b., Deng, X.-h., Tian, D.-l., & Hu, X. (2011). ExperimentsI research on removal of micron level dust by high gravity rotating packed bed (in Chinese). Chem. Eng., 39, 42-45. 36.Huang, T.-H. (2018). Performance Evaluation of Fine Particle Removal from Air Emissions of the E-waste Combustion Process via a Rotating Packed Bed. National Taiwan University, 37.J., Z. (1996). Experiment and modelling of liquid flow and mass transfer in rotating packed bed. (Ph.D. dissertation), Beijing University, 38.Jung, C. H., & Lee, K. W. (1998). Filtration of Fine Particles by Multiple Liquid Droplet and Gas Bubble Systems. Aerosol Science and Technology, 29(5), 389-401. doi:10.1080/02786829808965578 39.Kelleher, T., & Fair, J. R. (1996). Distillation Studies in a High-Gravity Contactor. Industrial & Engineering Chemistry Research, 35(12), 4646-4655. doi:10.1021/ie950662a 40.Keyvani, M., & Gardner, N. C. (1988). OPERATING CHARACTERISTICS OF ROTATING BEDS. doi:10.2172/10172400 41.Kim, H. T., Jung, C. H., Oh, S. N., & Lee, K. W. (2001). Particle Removal Efficiency of Gravitational Wet Scrubber Considering Diffusion, Interception, and Impaction. Environmental Engineering Science, 18(2), 125-136. doi:10.1089/10928750151132357 42.Kuo, C.-P., TsaiI, C.-H., & Chang, C.-T. (2017). Using CMAQ Modeling for Evaluation of Emission Impact on Environmental PM2.5 Level from Coal-Fired Boilers (in Chinese). Retrieved from 43.Lamb, H. (1993). Hydrodynamics: Cambridge university press. 44.Lee, K. W., & Liu, B. Y. H. (1980). On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters. Journal of the Air Pollution Control Association, 30(4), 377-381. doi:10.1080/00022470.1980.10464592 45.Letmathe, P., & Doost, R. K. (2000). Environmental cost accounting and auditing. Managerial Auditing Journal, 15(8), 424-431. doi:10.1108/02686900010354709 46.Li, J., & Liu, Y. (2007). Mechanism and evaluation of dedusting by high-gravity method (in Chinese). . Chem. Prod. Technol., 14, 35-37. 47.Li, J. M. (2004). Concept and Implementation of the Cost Assessment of the Environment. Industrial Development Bureau, MOEA 48.Li, W., Liu, H., Li, S., Li, W., Chen, Y., Gao, J., & Cao, Y. (2018). Removal of hydrophobic volatile organic compounds with sodium hypochlorite and surfactant in a co-current rotating packed bed. J Environ Sci (China), 64, 190-196. doi:10.1016/j.jes.2016.12.009 49.Li, W., Wu, W., Zou, H., Chu, G., Shao, L., & Chen, J. (2009). Process Intensification of VOC Removal from High Viscous Media by Rotating Packed Bed. Chinese Journal of Chemical Engineering, 17(3), 389-393. doi:10.1016/s1004-9541(08)60221-9 50.Li, Y., Ji, J., Xu, Z., Wang, G., Li, X., & Liu, X. (2013). Pressure Drop Model on Rotating Zigzag Bed as a New High-Gravity Technology. Industrial & Engineering Chemistry Research, 52(12), 4638-4649. doi:10.1021/ie301207e 51.Li, Y., Liu, Y., Zhang, L., Su, Q., & Jin, G. (2010). Absorption of NOx into Nitric Acid Solution in Rotating Packed Bed. Chinese Journal of Chemical Engineering, 18(2), 244-248. doi:10.1016/s1004-9541(08)60349-3 52.Li, Z.-Y., Dong, K., Liang, Y., Zhang, L., Sun, B., Chu, G.-W., . . . Chen, J.-F. (2017). Study on the removal of fine particles by using water in a rotating packed bed. The Canadian Journal of Chemical Engineering, 95(6), 1063-1068. doi:10.1002/cjce.22768 53.Liang-Liang Zhang, Jie-Xin Wang, Yang Xiang, Xiao-Fei Zeng, & Chen, J.-F. (2011). Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor MassTransfer Study. Industrial & Engineering Chemistry Research, 50 (11), 6957-6964. doi:10.1021/ie1025979 54.Licht, W. (1980). Air Control Engineering —— Basic Calculations for Particulate Collection. New York: Marcel Dekker Inc. 55.Licht, W. (1988). Air Pollution Control Engineering: Basic Calculations for Particulate Collection, 2nd ed. New York: Marcel Dekker. 56.Lin, C.-C., Ho, T.-J., & Liu, W.-T. (2002). Distillation in a Rotating Packed Bed. Journal of Chemical Engineering of Japan, 35(12), 1298-1304. doi:10.1252/jcej.35.1298 57.Lin, C.-C., & Jian, G.-S. (2007). Characteristics of a rotating packed bed equipped with blade packings. Separation and Purification Technology, 54(1), 51-60. doi:10.1016/j.seppur.2006.08.006 58.Lin, C.-C., Liu, W.-T., & Tan, C.-S. (2003). Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 42(11), 2381-2386. doi:10.1021/ie020669%2B 59.Lin, C.-C., & Su, Y.-R. (2008). Performance of rotating packed beds in removing ozone from gaseous streams. Separation and Purification Technology, 61(3), 311-316. doi:10.1016/j.seppur.2007.11.001 60.Lin, C.-C., Wei, T.-Y., Hsu, S.-K., & Liu, W.-T. (2006). Performance of a pilot-scale cross-flow rotating packed bed in removing VOCs from waste gas streams. Separation and Purification Technology, 52(2), 274-279. doi:10.1016/j.seppur.2006.05.003 61.Lin, C. S. (2008). Material Flow Cost Accounting of Coal-Fired Power Generation Facilities -An Example of the Linkou Power Plant. (Doctor), National Taipei University, 62.Lin, K. L. (2006). The Assessment of The Environmental Cost of Petrochemical Industry in Taiwan. (Master), National Cheng Kung University, 63.Liu, H.-S., Lin, C.-C., Wu, S.-C., & Hsu, H.-W. (1996). Characteristics of a Rotating Packed Bed. Industrial & Engineering Chemistry Research, 35(10), 3590-3596. doi:10.1021/ie960183r 64.Liu, Y.-Z. (2009). High Gravity Chemical Process and Technology: National Defense Industry Press. 65.Liu, Y., Luo, Y., Chu, G.-W., Luo, J.-Z., Arowo, M., & Chen, J.-F. (2017). 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing. Chemical Engineering Science, 170, 365-377. doi:10.1016/j.ces.2017.01.033 66.Llerena-Chavez, H., & Larachi, F. (2009). Analysis of flow in rotating packed beds via CFD simulations—Dry pressure drop and gas flow maldistribution. Chemical Engineering Science, 64(9), 2113-2126. doi:10.1016/j.ces.2009.01.019 67.Lu, X., Xie, P., Ingham, D. B., Ma, L., & Pourkashanian, M. (2018). A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds. Chemical Engineering Science, 189, 123-134. doi:10.1016/j.ces.2018.04.074 68.Marple, V. A., Rubow, K. L., & Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Science and Technology, 14(4), 434-446. doi:10.1080/02786829108959504 69.Martínez, E. L., Jaimes, R., Gomez, J. L., & Filho, R. M. (2012). CFD Simulation of Three-Dimensional Multiphase Flow in a Rotating Packed Bed. Computer Aided Chemical Engineering, 30, 1158-1162. doi:10.1016/B978-0-444-59520-1.50090-7 70.Menter, F. R. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. , . Paper presented at the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. 71.Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149 72.Munjal, S., Dudukovć, M. P., & Ramachandran, P. (1989). Mass-transfer in rotating packed beds—I. Development of gas—liquid and liquid—solid mass-transfer correlations. Chemical Engineering Science, 44(10), 2245-2256. doi:10.1016/0009-2509(89)85159-0 73.Munjal, S., Duduković, M. P., & Ramachandran, P. (1989). Mass-transfer in rotating packed beds—II. Experimental results and comparison with theory and gravity flow. Chemical Engineering Science, 44(10), 2257-2268. doi:10.1016/0009-2509(89)85160-7 74.Mussatti, D. (2002). Wet Scrubbers for Particulate Matter. (EPA/452/B-02-001). U.S. : Environmental Protection Agency 75.Nakamura, H., Deguchi, N., & Watano, S. (2015). Development of tapered rotating fluidized bed granulator for increasing yield of granules. Advanced Powder Technology, 26(2), 494-499. doi:10.1016/j.apt.2014.12.003 76.Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996). Diesel particulate emission control. Fuel Processing Technology, 47(1), 1-69. doi:Doi 10.1016/0378-3820(96)01002-8 77.Ouyang, Y., Xiang, Y., Gao, X.-Y., Li, W.-L., Zou, H.-K., Chu, G.-W., & Chen, J.-F. (2018). Micromixing efficiency in a rotating packed bed with non-Newtonian fluid. Chemical Engineering Journal, 354, 162-171. doi:10.1016/j.cej.2018.07.141 78.Ouyang, Y., Zou, H.-K., Gao, X.-Y., Chu, G.-W., Xiang, Y., & Chen, J.-F. (2018). Computational fluid dynamics modeling of viscous liquid flow characteristics and end effect in rotating packed bed. Chemical Engineering and Processing - Process Intensification, 123, 185-194. doi:10.1016/j.cep.2017.09.005 79.Pan, S.-Y., Adhikari, R., Chen, Y.-H., Li, P., & Chiang, P.-C. (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO 2 fixation via accelerated carbonation. Journal of Cleaner Production, 137, 617-631. doi:10.1016/j.jclepro.2016.07.112 80.Pan, S.-Y., Chang, E. E., & Chiang, P.-C. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12(5), 770-791. doi:10.4209/aaqr.2012.06.0149 81.Pan, S.-Y., Wang, P., Chen, Q., Jiang, W., Chu, Y.-H., & Chiang, P.-C. (2017). Development of high-gravity technology for removing particulate and gaseous pollutant emissions: Principles and applications. Journal of Cleaner Production, 149, 540-556. doi:10.1016/j.jclepro.2017.02.108 82.Pan, S. Y., Chen, Y. H., Chen, C. D., Shen, A. L., Lin, M., & Chiang, P. C. (2015). High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry. Environ Sci Technol, 49(20), 12380-12387. doi:10.1021/acs.est.5b02210 83.Pei, S.-L., Pan, S.-Y., Li, Y.-M., Xiang-Gao, P., & Chiang, P.-C. (2018). Performance evaluation of integrated air pollution control with alkaline waste valorization via high-gravity technology. Journal of the Taiwan Institute of Chemical Engineers, 87, 165-173. doi:10.1016/j.jtice.2018.03.032 84.Pei, S. L., Pan, S. Y., Li, Y. M., & Chiang, P. C. (2017). Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed. Environ Sci Technol, 51(18), 10674-10681. doi:10.1021/acs.est.7b00708 85.Pham, D. A., Lim, Y.-I., Jee, H., Ahn, E., & Jung, Y. (2015). Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal. Chemical Engineering Science, 132, 259-270. doi:10.1016/j.ces.2015.04.009 86.Qian, J., & Law, C. K. (1997). Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331, 59-80. doi:10.1017/s0022112096003722 87.Qian, Z., Chen, Q., & Grossmann, I. E. (2017). Optimal synthesis of rotating packed bed reactor. Computers & Chemical Engineering, 105, 152-160. doi:10.1016/j.compchemeng.2017.02.026 88.Ramshaw, C., & Mallinson, R. H. (1981). United States Patent No. US4283255A. 89.Rao, D. P., Bhowal, A., & Goswami, P. S. (2004). Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial & Engineering Chemistry Research, 43(4), 1150-1162. doi:10.1021/ie030630k 90.Sang, L., Luo, Y., Chu, G.-W., Zhang, J.-P., Xiang, Y., & Chen, J.-F. (2017). Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study. Chemical Engineering Science, 158, 429-438. doi:10.1016/j.ces.2016.10.044 91.Sargent, R. G. (1998). Verification And Validation Of Simulation Models. Electrical Engineering and Computer Science, 7. 92.SAS. (2019). Statistics Knowledge Portal ─ Correlation. Retrieved from https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-correlation.html 93.Sawistowski, H. (1957). Flooding velocities in packed columns operating at reduced pressures. Chemical Engineering Science, 6(3), 138-140. doi:10.1016/0009-2509(57)85007-6 94.Schaltegger, S. (2017). Contemporary Environmental Accounting. 95.Shi, X., Xiang, Y., Wen, L.-X., & Chen, J.-F. (2013). CFD analysis of liquid phase flow in a rotating packed bed reactor. Chemical Engineering Journal, 228, 1040-1049. doi:10.1016/j.cej.2013.05.081 96.Singh, S. P., Wilson, J. H., Counce, R. M., Villiersfisher, J. F., Jennings, H. L., Lucero, A. J., . . . Elliott, M. G. (1992). Removal of Volatile Organic-Compounds from Groundwater Using a Rotary Air Stripper. Industrial & Engineering Chemistry Research, 31(2), 574-580. doi:DOI 10.1021/ie00002a019 97.Song, Y., Chen, J., Fu, J., & Chen, J. (2003). Research on Particle Removal Efficiency of the Rotating Packed Bed. Chemical Industry and Engineering Progress, 22, 499. 98.Sun, L., Wu, Q., Liao, K., Yu, P., Cui, Q., Rui, Q., & Wang, D. (2016). Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere, 144, 2392-2400. doi:10.1016/j.chemosphere.2015.11.028 99.Sung, W.-D., & Chen, Y.-S. (2012). Characteristics of a rotating packed bed equipped with blade packings and baffles. Separation and Purification Technology, 93, 52-58. doi:10.1016/j.seppur.2012.03.033 100.Tennekes, H., & Lumley, J. L. (1972). A First Course in Turbulence (Vol. The MIT Press). Cambridge, MA. 101.Theodore, L. (2008). Air Pollution Control Equipment Calculations. 102.Tung, H.-H., & Mah, R. S. H. (1985). Modeling Liquid Mass Transfer in Higee Separation Process. Chemical Engineering Communications, 39(1-6), 147-153. doi:10.1080/00986448508911667 103.USEPA. (1996). An Introduction to Environmental accounting as a Business Management Tool: Key Concepts and Terms. Washington,D.C. 104.USEPA. (2016a). Lesson 4 ESP Design Review. (2.0-2/98). 105.USEPA. (2016b). Lesson 7 Industrial Applications of Fabric Filters. (2.0-3/95). 106.Wang, G. Q., Xu, Z. C., Yu, Y. L., & Ji, J. B. (2008). Performance of a rotating zigzag bed—A new HIGEE. Chemical Engineering and Processing: Process Intensification, 47(12), 2131-2139. doi:10.1016/j.cep.2007.11.001 107.Wenzel, D., & Górak, A. (2018). Review and analysis of micromixing in rotating packed beds. Chemical Engineering Journal, 345, 492-506. doi:10.1016/j.cej.2018.03.109 108.Wilcox., D. C. (2006). Turbulence Modeling for CFD, 3rd ed. La Cañada, CA: DCW Industries, Inc. 109.Xie, P., Lu, X., Yang, X., Ingham, D., Ma, L., & Pourkashanian, M. (2017). Characteristics of liquid flow in a rotating packed bed for CO 2 capture: A CFD analysis. Chemical Engineering Science, 172, 216-229. doi:10.1016/j.ces.2017.06.040 110.Xu, C., Jiao, W., Liu, Y., Guo, L., Yuan, Z., & Zhang, Q. (2014). Effects of airflow field on droplets diameter inside the corrugated packing of a rotating packed bed. China Petroleum Processing and Petrochemical Technology, 16(4), 38-46. 111.Yang, K., Chu, G., Zou, H., Sun, B., Shao, L., & Chen, J.-F. (2011). Determination of the effective interfacial area in rotating packed bed. Chemical Engineering Journal, 168(3), 1377-1382. doi:10.1016/j.cej.2011.01.100 112.Yang, W., Wang, Y., Chen, J., & Fei, W. (2010). Computational fluid dynamic simulation of fluid flow in a rotating packed bed. Chemical Engineering Journal, 156(3), 582-587. doi:10.1016/j.cej.2009.04.013 113.Yang, Y.-C., Ouyang, Y., Zhang, N., Yu, Q.-J., & Arowo, M. (2019). A review on computational fluid dynamic simulation for rotating packed beds. Journal of Chemical Technology & Biotechnology, 94(4), 1017-1031. doi:10.1002/jctb.5880 114.Yang, Y., Xiang, Y., Chu, G., Zou, H., Luo, Y., Arowo, M., & Chen, J.-F. (2015). A noninvasive X-ray technique for determination of liquid holdup in a rotating packed bed. Chemical Engineering Science, 138, 244-255. doi:10.1016/j.ces.2015.07.044 115.Yang, Y., Xiang, Y., Chu, G., Zou, H., Sun, B., Arowo, M., & Chen, J.-F. (2016). CFD modeling of gas–liquid mass transfer process in a rotating packed bed. Chemical Engineering Journal, 294, 111-121. doi:10.1016/j.cej.2016.02.054 116.Yang, Y., Xiang, Y., Li, Y., Chu, G., Zou, H., Arowo, M., & Chen, J. (2015). 3D CFD modelling and optimization of single-phase flow in rotating packed beds. The Canadian Journal of Chemical Engineering, 93(6), 1138-1148. doi:10.1002/cjce.22183 117.Zhang, L., Ninomiya, Y., & Yamashita, T. (2006). Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel, 85(10-11), 1446-1457. doi:10.1016/j.fuel.2006.01.009 118.Zhang, Y., Liu, L., & Liu, Y. (2003). Experimental study on flue gas dedusting by hypergravity rotary bed (in Chinese). Environ. Eng., 21, 42-58. 119.Zhang, Y., Yin, Y., Chen, Y., Gao, G., Yu, P., Luo, J., & Jiang, Y. (2003). PCAS--a precomputed proteome annotation database resource. BMC Genomics, 4(1), 42. doi:10.1186/1471-2164-4-42 120.Zhao, H., Shao, L., & Chen, J.-F. (2010). High-gravity process intensification technology and application. Chemical Engineering Journal, 156(3), 588-593. doi:10.1016/j.cej.2009.04.053 121.Zheng, X.-H., Chu, G.-W., Kong, D.-J., Luo, Y., Zhang, J.-P., Zou, H.-K., . . . Chen, J.-F. (2016). Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. Chemical Engineering Journal, 285, 236-242. doi:10.1016/j.cej.2015.09.083 122.Zhu, G. (2017). Introduction, Advancement and Proficiency of Autodesk CFD (in Chinese). China: Machinery Industry Press. 123.Zou, H., Sheng, M., Sun, X., Ding, Z., Arowo, M., Luo, Y., . . . Sun, B. (2017). Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed. Fuel, 204, 47-53. doi:10.1016/j.fuel.2017.05.017
|