(34.201.11.222) 您好!臺灣時間:2021/02/25 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:丁昱
研究生(外文):Yu Ting
論文名稱:以活性碳/黏土薄層覆蓋法整治含汞底泥之縮模研究
論文名稱(外文):Using Activated Carbon/Clay-Based Thin Layer Capping for Mercury-Contaminated Sediment Remediation: Microcosms Study
指導教授:席行正
口試委員:林居慶范致豪許正一
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:107
中文關鍵詞:甲基汞底泥整治薄層覆蓋法
DOI:10.6342/NTU201901399
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,現地薄層覆蓋法技術之突破為整治汞汙染底泥帶來新的可能性,也提供除疏濬法以外新的整治策略。本研究分為兩部分,利用數種活性碳/黏土基之薄層覆蓋層在微型系統中評估整治汞底泥之可能性。在本研究第一部分中,自製之含硫活性碳(SAC)在等溫吸附實驗中發現對於二價汞及甲基汞之吸附親和性(KD值分別為9.42×104及7.66×105)比起其原始活性碳(AC)有顯著提升(KD值分別為3.69×104及2.25×105)。但在底泥競爭吸附實驗中,AC對比SAC對於汞底泥(14.2‒235.8 mg-Hg/kg)中具有較佳之汞溶出抑制能力,並在3%添加量下具有最佳之汞溶出抑制效率(99.88%)。其原理可能為SAC在吸附實驗平衡後形成穩定的HgS (s)奈米顆粒,使底泥競爭吸附實驗之AC抑制汞溶出之能力優於SAC。另外,研究之各式覆蓋層(SAC+皂白土、SAC+低汞底泥、AC+皂白土)在上流式微型系統中對於總汞及甲基汞均具有良好溶出抑制能力。在本研究第二部分為探討底泥擾動事件對於覆蓋穩定之影響,開發一具有自製震盪系統之橫向流微型系統。三種不同黏土材料之活性碳/黏土基覆蓋層施加於實場汞底泥中(76.0±2.59 mg-Hg/kg),發現AC(3%)+皂白土(3%)以及AC(3%)+高嶺土(3%)在模擬橫向流及表層底泥擾動之條件下,對於實場底泥中總汞及甲基汞皆能達到約75‒95%及64‒98%之溶出抑制效果達75天之久(實驗全時程)。而AC(3%)+蒙脫土(3%)的薄層覆蓋層由於蒙脫土在水中沉降性及穩定性較差,使總汞及甲基汞溶出抑制效率不佳。本研究發現穩定性高之薄層覆蓋層有較佳之汞溶出抑制能力,並於間歇性底泥擾動下有較佳之抵抗能力;而穩定性較差之薄層覆蓋層可能造成甲基汞大量溶出。
The breakthrough of in-situ thin layer capping technology in recent years has shed light on the remediation of Hg-contaminated sediment and provides a promising alternative besides traditional dredging. In this thesis, the plausibility of several activated carbon (AC)/clay-based thin layer caps were demonstrated in two microcosm studies. In the first study, a lab-synthesized sulfurized activated carbon (SAC) performed greater sorption affinity to both aqueous Hg2+ (KD=9.42×104) and MeHg (KD=7.66×105) compared to those for raw activated carbon (KD=3.69×104 and 2.25×105, respectively) in isotherm adsorption tests. However, AC appeared to have greater sequestration ability than SAC in Hg-spiked sediment (14.2‒235.8 mg-Hg/kg), with the optimistic dosage of 3wt% AC causing reduction of THg with 99.88%. It may suggests that possibly formed nano-HgS particles could be released thus elevates the porewater Hg when SAC existed. Also, a 83-d trail of up-flow microcosms was demonstrated with various caps (SAC + bentonite, SAC + clean sediment, and AC + bentonite) and all observed significant inhibition of both THg and MeHg. In the second study, a horizontal-flow microcosm with lab-made vibration system was designed to evaluate the capping efficiency during turbation events. AC/clay-based caps with clay combinations were applied to actual Hg-contaminated estuary sediment (76.0±2.59 mg-Hg/kg). The caps with AC + bentonite and AC + kaolin were efficient in reducing both total mercury (THg) and methylmercury (MeHg) concentrations in overlying water by 75−95% and 64−98%, respectively in the later stage of 75-d operation. In contrast, the AC (3%) + montmorillonite (3%) cap did not show a significant reduction on THg and MeHg in overlying water, probably due to the unstable, suspension property of montmorillonite. The stable caps showed higher resistance to Hg breakthrough under occasional turbation events; however, a labile cap appeared to have dramatic Hg breakthrough when turbation occurred. It is therefore essential to note that with unstable caps, turbation events may result in unwanted secondary resuspension of contaminants.
Acknowledgement I
中文摘要 II
Abstract III
Contents V
List of Figures VII
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Hg Management and Thin Layer Capping 3
2.1 Mercury Risk and Global Management Efforts 3
2.2 In-situ Approach and Thin Layer Capping 5
2.3 Capping Materials 7
2.4 Real Site Practice 10
2.5 Estimation of Remediation Cost 13
2.6 Challenges and Opportunities 15
Chapter 3 Capping of Mercury Sediment with SAC 18
3.1 Introduction 18
3.2 Materials and Methods 20
3.2.1 Materials 20
3.2.2 Physical and Chemical Analysis of Materials 20
3.2.3 Aqueous Adsorption Experiment 21
3.2.4 Sediment Competition Adsorption Experiment 22
3.2.5 Microcosm Experiment 22
3.2.6 Mercury and Methylmercury Analysis 24
3.3 Results and Discussion 25
3.3.2 Aqueous Adsorption Experiment 28
3.3.3 Sediment Competition Adsorption Experiment 34
3.3.4 Microcosm Experiment 38
3.4 Summaries 40
3.5 Supporting Information 42
Chapter 4 AC/clay-based Caps Reduce Mercury Escape under Horizontal Flows and Sediment Turbation 49
4.1 Introduction 49
4.2 Materials and Methods 50
4.2.1 Sorbents Preparation, Sediment Collection, and Characterization 50
4.2.2 Artificial Vibration System 51
4.2.3 Microcosms Setup and Operation 52
4.2.4 Sample Collection and Analysis 53
4.3 Results and Discussion 54
4.3.2 Sulfide, Sulfate, Chloride, and Total Fe in Overlying Water 56
4.3.3 Reduction of Aqueous THg and MeHg by Thin Layer Cap 59
4.3.4 ORP, THg, and MeHg in Sediment 63
4.3.5 The Stability of Thin Layer Caps during Turbation 67
4.4 Summaries 67
4.5 Supporting Information 69
Chapter 5 Conclusions and Suggestions 89
References 91
[1] H.W. Hsiao, S.M. Ullrich, T.W. Tanton, Burdens of mercury in residents of Temirtau, Kazakhstan I: hair mercury concentrations and factors of elevated hair mercury levels, Sci Total Environ, 409 (2011) 2272-2280.
[2] L. Windham‐Myers, M. Marvin‐Dipasquale, D.P. Krabbenhoft, J.L. Agee, M.H. Cox, P. Heredia‐Middleton, C. Coates, E. Kakouros, Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment, J Geophysic Res Biogeosci, 114 (2009).
[3] J. Wang, X. Feng, C.W. Anderson, Y. Xing, L. Shang, Remediation of mercury contaminated sites–a review, J Hazard Mater, 221 (2012) 1-18.
[4] M. Morris, R. Sams, G. Gillis, R. Helsel, E. Alperin, T. Geisler, A. Groen, D. Root, Bench-and pilot-scale demonstration of thermal desorption for removal of mercury from the Lower East Fork Poplar Creek floodplain soils, in, Oak Ridge National Lab., 1995.
[5] D. Kupryianchyk, M.I. Rakowska, D. Reible, J. Harmsen, G. Cornelissen, M. van Veggel, S.E. Hale, T. Grotenhuis, A.A. Koelmans, Positioning activated carbon amendment technologies in a novel framework for sediment management, Integr Environ Assess Manag, 11 (2015) 221-234.
[6] T.S. Bridges, K.E. Gustavson, P. Schroeder, S.J. Ells, D. Hayes, S.C. Nadeau, M.R. Palermo, C. Patmont, Dredging processes and remedy effectiveness: Relationship to the 4 Rs of environmental dredging, Integr Environ Assess Manag, 6 (2010) 619-630.
[7] U. Ghosh, R.G. Luthy, G. Cornelissen, D. Werner, C.A. Menzie, In-situ sorbent amendments: a new direction in contaminated sediment management, Environ Sci Technol, 45 (2011) 1163-1168.
[8] Y.M. Cho, U. Ghosh, A.J. Kennedy, A. Grossman, G. Ray, J.E. Tomaszewski, D.W. Smithenry, T.S. Bridges, R.G. Luthy, Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment, Environ Sci Technol, 43 (2009) 3815-3823.
[9] G. Cornelissen, M. Elmquist Kruså, G.D. Breedveld, E. Eek, A.M. Oen, H.P.H. Arp, C. Raymond, G.r. Samuelsson, J.E. Hedman, Ø.J.E.S. Stokland, Remediation of contaminated marine sediment using thin-layer capping with activated carbon: a field experiment in Trondheim Harbor, Norway, Environ Sci Technol, 45 (2011) 6110-6116.
[10] B. Beckingham, U. Ghosh, Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments, Environ Sci Technol, 45 (2011) 10567-10574.
[11] S. Abel, J. Akkanen, A Combined Field and Laboratory Study on Activated Carbon-Based Thin Layer Capping in a PCB-Contaminated Boreal Lake, Environ Sci Technol, 52 (2018) 4702-4710.
[12] J. Wang, B.L. Deng, X.R. Wang, J.Z. Zheng, Adsorption of Aqueous Hg(II) by Sulfur-Impregnated Activated Carbon, Environ Eng Sci, 26 (2009) 1693-1699.
[13] Z.C. Li, L.Y. Wu, H.J. Liu, H.C. Lan, J.H. Qu, Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization, Chem Eng, 228 (2013) 925-934.
[14] P. Hadi, M.H. To, C.W. Hui, C.S. Lin, G. McKay, Aqueous mercury adsorption by activated carbons, Water Res, 73 (2015) 37-55.
[15] J.W.M. Rudd, R.A. Bodaly, N.S. Fisher, C.A. Kelly, D. Kopec, C. Whipple, Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota, Sci Total Environ, 642 (2018) 1340-1352.
[16] C.A. Kelly, J.W.M. Rudd, Transport of mercury on the finest particles results in high sediment concentrations in the absence of significant ongoing sources, Sci Total Environ, 637-638 (2018) 1471-1479.
[17] J.R. Flanders, R.R. Turner, T. Morrison, R. Jensen, J. Pizzuto, K. Skalak, R. Stahl, Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream, Appl Geochem, 25 (2010) 1756-1769.
[18] R.Q. Yu, J.R. Flanders, E.E. Mack, R. Turner, M.B. Mirza, T. Barkay, Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments, Environ Sci Technol, 46 (2012) 2684-2691.
[19] J. Mutter, J. Naumann, C. Sadaghiani, H. Walach, G. Drasch, Amalgam studies: disregarding basic principles of mercury toxicity, Int J Hyg Environ Health, 207 (2004) 391-397.
[20] P. Holmes, K. James, L. Levy, Is low-level environmental mercury exposure of concern to human health?, Sci Total environ, 408 (2009) 171-182.
[21] A.H. Stern, A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment, Environ Res, 98 (2005) 133-142.
[22] H.T. Hogberg, A. Kinsner-Ovaskainen, S. Coecke, T. Hartung, A.K. Bal-Price, mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach, J Toxicol Sci, 113 (2009) 95-115.
[23] F.M.M. Morel, A.M.L. Kraepiel, M. Amyot, The chemical cycle and bioaccumulation of mercury, Annu Rev Ecol Syst, 29 (1998) 543-566.
[24] J.G. Yu, B.Y. Yue, X.W. Wu, Q. Liu, F.P. Jiao, X.Y. Jiang, X.Q. Chen, Removal of mercury by adsorption: a review, Environ Sci Pollut Res Int, 23 (2016) 5056-5076.
[25] Y. Paruchuri, A. Siuniak, N. Johnson, E. Levin, K. Mitchell, J.M. Goodrich, E.P. Renne, N. Basu, Occupational and environmental mercury exposure among small-scale gold miners in the Talensi–Nabdam District of Ghana''s Upper East region, Sci Total Environ, 408 (2010) 6079-6085.
[26] H.M. Amos, D.J. Jacob, D. Kocman, H.M. Horowitz, Y. Zhang, S. Dutkiewicz, M. Horvat, E.S. Corbitt, D.P. Krabbenhoft, E.M. Sunderland, Global biogeochemical implications of mercury discharges from rivers and sediment burial, Environ Sci Technol, 48 (2014) 9514-9522.
[27] D. Kocman, S.J. Wilson, H.M. Amos, K.H. Telmer, F. Steenhuisen, E.M. Sunderland, R.P. Mason, P. Outridge, M. Horvat, Toward an assessment of the global inventory of present-day mercury releases to freshwater environments, Int J Environ Res Public Health, 14 (2017) 138.
[28] G. Batley, R. Stahl, M. Babut, T. Bott, J. Clark, L. Field, K. Ho, D. Mount, R. Swartz, A. Tessier, Scientific underpinnings of sediment quality guidelines, (2005).
[29] E.M. Sunderland, F.A.P.C. Gobas, A. Heyes, B.A. Branfireun, A.K. Bayer, R.E. Cranston, M.B. Parsons, Speciation and bioavailability of mercury in well-mixed estuarine sediments, Mar Chem, 90 (2004) 91-105.
[30] R.P. Mason, E.H. Kim, J. Cornwell, D. Heyes, An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment, Mar Chem, 102 (2006) 96-110.
[31] T.L. Clarke, B. Lesht, R.A. Young, D.J.P. Swift, G.L. Freeland, Sediment resuspension by surface-wave action - an examination of possible mechanisms, Mar Geol, 49 (1982) 43-59.
[32] L.C. Lund-Hansen, M. Petersson, W. Nurjaya, Vertical sediment fluxes and wave-induced sediment resuspension in a shallow-water coastal lagoon, Estuaries, 22 (1999) 39-46.
[33] B. Morgan, A.W. Rate, E.D. Burton, Water chemistry and nutrient release during the resuspension of FeS-rich sediments in a eutrophic estuarine system, Sci Total Environ, 432 (2012) 47-56.
[34] S. Josefsson, K. Leonardsson, J.S. Gunnarsson, K. Wiberg, Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments, Environ Sci Technol, 44 (2010) 7456-7464.
[35] M. Ravichandran, Interactions between mercury and dissolved organic matter––a review, Chemosphere, 55 (2004) 319-331.
[36] C.T. Driscoll, Y.J. Han, C.Y. Chen, D.C. Evers, K.F. Lambert, T.M. Holsen, N.C. Kamman, R.K. Munson, Mercury contamination in forest and freshwater ecosystems in the Northeastern United States, Biosci, 57 (2007) 17-28.
[37] A.M. Kraepiel, K. Keller, H.B. Chin, E.G. Malcolm, F.M. Morel, Sources and variations of mercury in tuna, Environ Sci Technol, 37 (2003) 5551-5558.
[38] R. Liu, Q. Wang, X. Lu, F. Fang, Y. Wang, Distribution and speciation of mercury in the peat bog of Xiaoxing''an Mountain, northeastern China, Environ Pollut, 124 (2003) 39-46.
[39] L.L. Loseto, S.D. Siciliano, D.R. Lean, Methylmercury production in High Arctic wetlands, Environ Toxicol Chem, 23 (2004) 17-23.
[40] S.M. Ullrich, T.W. Tanton, S.A. Abdrashitova, Mercury in the aquatic environment: A review of factors affecting methylation, Crit Rev Env Sci Tec, 31 (2001) 241-293.
[41] H. Shamsijazeyi, T. Kaghazchi, Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity, Water Sci Technol, 69 (2014) 546-552.
[42] M. Nadeem, M. Shabbir, M. Abdullah, S. Shah, G. McKay, Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents, Chem Eng, 148 (2009) 365-370.
[43] T. Wajima, K. Murakami, T. Kato, K. Sugawara, Heavy metal removal from aqueous solution using carbonaceous K2 S-impregnated adsorbent, J Environ Sci, 21 (2009) 1730-1734.
[44] M. Martins, P.M. Costa, J. Raimundo, C. Vale, A.M. Ferreira, M.H. Costa, Impact of remobilized contaminants in Mytilus edulis during dredging operations in a harbour area: bioaccumulation and biomarker responses, Ecotoxicol Environ Saf, 85 (2012) 96-103.
[45] G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa, Soil remediation technologies towards green remediation strategies, Int J Environ Chem Ecol Geol Geophys Eng, 10 (2016) 654-658.
[46] D.D. Reible, Processes, assessment and remediation of contaminated sediments, Springer, 2014.
[47] J.R. Zimmerman, D. Werner, U. Ghosh, R.N. Millward, T.S. Bridges, R.G. Luthy, Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments, Environ Toxicol Chem, 24 (2005) 1594-1601.
[48] Y. Choi, Y.M. Cho, R.G. Luthy, In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. Column studies, Environ Sci Technol, 48 (2014) 1835-1842.
[49] P.B. McLeod, M.J. van den Heuvel-Greve, S.N. Luoma, R.G. Luthy, Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon, Environ Toxicol Chem, 26 (2007) 980-987.
[50] J.E. Tomaszewski, D. Werner, R.G. Luthy, Activated carbon amendment as a treatment for residual DDT in sediment from a superfund site in San Francisco Bay, Richmond, California, USA, Environ Toxicol Chem, 26 (2007) 2143-2150.
[51] X.L. Sun, U. Ghosh, PCB bioavailability control in Lumbriculus variegatus through different modes of activated carbon addition to sediments, Environ Sci Technol, 41 (2007) 4774-4780.
[52] S.E. Hale, J.E. Tomaszewski, R.G. Luthy, D. Werner, Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries, Water Res, 43 (2009) 4336-4346.
[53] S.E. Hale, D. Werner, Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon, Environ Sci Technol, 44 (2010) 3381-3387.
[54] E.M.-L. Janssen, M.-N.l. Croteau, S.N. Luoma, R.G. Luthy, Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment, Environ Sci Technol, 44 (2009) 2857-2863.
[55] R.N. Millward, T.S. Bridges, U. Ghosh, J.R. Zimmerman, R.G. Luthy, Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus), Environ Sci Technol, 39 (2005) 2880-2887.
[56] R.C. Brandli, T. Hartnik, T. Henriksen, G. Cornelissen, Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil, Chemosphere, 73 (2008) 1805-1810.
[57] C.R. Patmont, U. Ghosh, P. LaRosa, C.A. Menzie, R.G. Luthy, M.S. Greenberg, G. Cornelissen, E. Eek, J. Collins, J. Hull, T. Hjartland, E. Glaza, J. Bleiler, J. Quadrini, In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology, Integr Environ Assess Manag, 11 (2015) 195-207.
[58] Y.M. Cho, D.W. Smithenry, U. Ghosh, A.J. Kennedy, R.N. Millward, T.S. Bridges, R.G. Luthy, Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness, Mar Environ Res, 64 (2007) 541-555.
[59] Y.M. Cho, D. Werner, Y. Choi, R.G. Luthy, Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon, J Contam Hydrol, 129-130 (2012) 25-37.
[60] G. Cornelissen, K. Amstaetter, A. Hauge, M. Schaanning, B. Beylich, J.S. Gunnarsson, G.D. Breedveld, A.M. Oen, E. Eek, Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: physicochemical effects, Environ Sci Technol, 46 (2012) 12030-12037.
[61] G. Cornelissen, M. Schaanning, J.S. Gunnarsson, E. Eek, A large-scale field trial of thin-layer capping of PCDD/F-contaminated sediments: sediment-to-water fluxes up to 5 years post-amendment, Integr Environ Assess Manag, 12 (2016) 216-221.
[62] C. Menzie, B. Amos, S.K. Driscoll, U. Ghosh, C. Gilmour, Evaluating the efficacy of a low-impact delivery system for in situ treatment of sediments contaminated with methylmercury and other hydrophobic chemicals, in, Exponent Alexandria United States, 2016.
[63] G.S. Samuelsson, C. Raymond, S. Agrenius, M. Schaanning, G. Cornelissen, J.S. Gunnarsson, Response of marine benthic fauna to thin-layer capping with activated carbon in a large-scale field experiment in the Grenland fjords, Norway, Environ Sci Pollut Res Int, 24 (2017) 14218-14233.
[64] J.L. Gomez-Eyles, C. Yupanqui, B. Beckingham, G. Riedel, C. Gilmour, U. Ghosh, Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury, Environ Sci Technol, 47 (2013) 13721-13729.
[65] C.C. Gilmour, G.S. Riedel, G. Riedel, S. Kwon, R. Landis, S.S. Brown, C.A. Menzie, U. Ghosh, Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments, Environ Sci Technol, 47 (2013) 13001-13010.
[66] A.S. Lewis, T.G. Huntington, M.C. Marvin-DiPasquale, A. Amirbahman, Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon, Environmental Pollution, 212 (2016) 366-373.
[67] H. Kong, J. He, Y. Gao, H. Wu, X. Zhu, Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar, J Agric Food Chem, 59 (2011) 12116-12123.
[68] C. Gilmour, T. Bell, A. Soren, G. Riedel, G. Riedel, D. Kopec, D. Bodaly, U. Ghosh, Activated carbon thin-layer placement as an in situ mercury remediation tool in a Penobscot River salt marsh, Sci Total Environ, 621 (2018) 839-848.
[69] P. Liu, C.J. Ptacek, D.W. Blowes, W.D. Gould, Control of mercury and methylmercury in contaminated sediments using biochars: A long-term microcosm study, Appl Geochem, 92 (2018) 30-44.
[70] E.M. Janssen, B.A. Beckingham, Biological responses to activated carbon amendments in sediment remediation, Environ Sci Technol, 47 (2013) 7595-7607.
[71] E.M. Janssen, Y. Choi, R.G. Luthy, Assessment of nontoxic, secondary effects of sorbent amendment to sediments on the deposit-feeding organism Neanthes arenaceodentata, Environ Sci Technol, 46 (2012) 4134-4141.
[72] I. Nybom, G. Waissi-Leinonen, K. Maenpaa, M.T. Leppanen, J.V. Kukkonen, D. Werner, J. Akkanen, Effects of activated carbon ageing in three PCB contaminated sediments: Sorption efficiency and secondary effects on Lumbriculus variegatus, Water Res, 85 (2015) 413-421.
[73] K.A. Krishnan, T.S. Anirudhan, Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith, Ind Eng Chem Res, 41 (2002) 5085-5093.
[74] N. Asasian, T. Kaghazchi, Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase, Int J Environ Sci Te, 12 (2015) 2511-2522.
[75] J.H. Park, G.K. Choppala, N.S. Bolan, J.W. Chung, T. Chuasavathi, Biochar reduces the bioavailability and phytotoxicity of heavy metals, Plant Soil, 348 (2011) 439-451.
[76] A.S.K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, A Meticulous study on the adsorption of mercury as tetrachloromercurate(II) anion with trioctylamine modified sodium montmorillonite and its application to a coal fly ash sample, Ind Eng Chem Res, 51 (2012) 11312-11327.
[77] B. Sarkar, Y. Xi, M. Megharaj, G.S. Krishnamurti, D. Rajarathnam, R. Naidu, Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays, J Hazard Mater, 183 (2010) 87-97.
[78] B. Sarkar, R. Naidu, M.M. Rahman, M. Megharaj, Y.F. Xi, Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils, J Soil Sediment, 12 (2012) 704-712.
[79] V.A. Oyanedel-Craver, J.A. Smith, Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites, J Hazard Mater, 137 (2006) 1102-1114.
[80] M.J. Wharton, B. Atkins, J.M. Charnock, F.R. Livens, R.A.D. Pattrick, D. Collison, An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS), App Geochem, 15 (2000) 347-354.
[81] M. Wolthers, S.J. Van der Gaast, D. Rickard, The structure of disordered mackinawite, Am Mineral, 88 (2003) 2007-2015.
[82] J.W. Morse, T. Arakaki, Adsorption and coprecipitation of divalent metals with mackinawite (FeS), Geochim Cosmochim Acta, 57 (1993) 3635-3640.
[83] D. Ito, K. Miura, T. Ichimura, I. Ihara, T. Watanabe, Removal of As, Cd, Hg and Pb ions from solution by adsorption with bacterially-produced magnetic iron sulfide particles using high gradient magnetic separation, Ieee T Appl Supercon, 14 (2004) 1551-1553.
[84] A. Özverdi, M. Erdem, Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide, J Hazard Mater, 137 (2006) 626-632.
[85] J.H.P. Watson, D.C. Ellwood, Q.X. Deng, S. Mikhalovsky, C.E. Hayter, J. Evans, Heavy-metal adsorption on bacterially produced FeS, Miner Eng, 8 (1995) 1097-1108.
[86] J. Liu, K.T. Valsaraj, I. Devai, R.D. DeLaune, Immobilization of aqueous Hg(II) by mackinawite (FeS), J Hazard Mater, 157 (2008) 432-440.
[87] G.E. Jean, G.M. Bancroft, Heavy metal adsorption by sulphide mineral surfaces, Geochim Cosmochim Acta, 50 (1986) 1455-1463.
[88] P. Behra, P. Bonnissel-Gissinger, M. Alnot, R. Revel, J.J. Ehrhardt, XPS and XAS study of the sorption of Hg(II) onto pyrite, Langmuir, 17 (2001) 3970-3979.
[89] Y. Sun, D. Lv, J. Zhou, X. Zhou, Z. Lou, S.A. Baig, X. Xu, Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study, Chemosphere, 185 (2017) 452-461.
[90] U. Skyllberg, A. Drott, Competition between disordered iron sulfide and natural organic matter associated thiols for mercury (II): An EXAFS study, Environ Sci Technol, 44 (2010) 1254-1259.
[91] N.R. Council, Sediment dredging at Superfund megasites: Assessing the effectiveness, National Academies Press, 2007.
[92] C. Liu, J.A. Jay, T.E. Ford, Evaluation of environmental effects on metal transport from capped contaminated sediment under conditions of submarine groundwater discharge, Environ Sci Technol, 35 (2001) 4549-4555.
[93] M. Xie, N. Wang, J.F. Gaillard, A.I. Packman, Interplay between flow and bioturbation enhances metal efflux from low-permeability sediments, J Hazard Mater, 341 (2018) 304-312.
[94] K.R. Roche, A.F. Aubeneau, M. Xie, T. Aquino, D. Bolster, A.I. Packman, An Integrated Experimental and Modeling Approach to Predict Sediment Mixing from Benthic Burrowing Behavior, Environ Sci Technol, 50 (2016) 10047-10054.
[95] E.A. Seelen, G.M. Massey, R.P. Mason, Role of sediment resuspension on estuarine suspended particulate mercury dynamics, Environ Sci Technol, 52 (2018) 7736-7744.
[96] D. Meric, S.M. Barbuto, A.N. Alshawabkeh, J.P. Shine, T.C. Sheahan, Effect of reactive core mat application on bioavailability of hydrophobic organic compounds, Sci Total Environ, 423 (2012) 168-175.
[97] M.T. Jonker, M.P. Suijkerbuijk, H. Schmitt, T.L. Sinnige, Ecotoxicological effects of activated carbon addition to sediments, Environ Sci Technol, 43 (2009) 5959-5966.
[98] B. Beckingham, D. Buys, H. Vandewalker, U. Ghosh, Observations of limited secondary effects to benthic invertebrates and macrophytes with activated carbon amendment in river sediments, Environ Toxicol Chem, 32 (2013) 1504-1515.
[99] Y. Choi, Y.M. Cho, R.G. Luthy, D. Werner, Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site- and compound-specific characteristics, J Hazard Mater, 301 (2016) 424-432.
[100] R. Shu, Y. Wang, H. Zhong, Biochar amendment reduced methylmercury accumulation in rice plants, J Hazard Mater, 313 (2016) 1-8.
[101] G. Gee, J. Bauder, A.J.I. Klute, Madison, WIS, USA, Particle-Size Analysis, Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Soil Since Society of America, (1986).
[102] O. Mehra, M. Jackson, Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate, in: Clay Miner, Elsevier, 2013, pp. 317-327.
[103] A. Walkley, I.A. Black, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Science, 37 (1934) 29-38.
[104] D.R. Keeney, D.W.J.M.o.s.a.P.C. Nelson, m. properties, Nitrogen—Inorganic Forms 1, (1982) 643-698.
[105] N.M. Mazrui, S. Jonsson, S. Thota, J. Zhao, R.P. Mason, Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments, Geochim Cosmochim Acta, 194 (2016) 153-162.
[106] M.R. Chaves, K.T. Valsaraj, R.D. DeLaune, R.P. Gambrell, P.M. Buchler, Mercury uptake by biogenic silica modified with L-cysteine, Environ Technol, 32 (2011) 1615-1625.
[107] Y.X. Huang, S.L. Candelaria, Y.W. Li, Z.M. Li, J.J. Tian, L.L. Zhang, G.Z. Cao, Sulfurized activated carbon for high energy density supercapacitors, Journal Power Sources, 252 (2014) 90-97.
[108] T. Grzybek, R. Pietrzak, H. Wachowska, The comparison of oxygen and sulfur species formed by coal oxidation with O2/Na2CO3 or peroxyacetic acid solution. XPS studies, Energy Fuels, 18 (2004) 804-809.
[109] M. Seredych, M. Khine, T.J. Bandosz, Enhancement in dibenzothiophene reactive adsorption from liquid fuel via incorporation of sulfur heteroatoms into the nanoporous carbon matrix, Chemsuschem, 4 (2011) 139-147.
[110] H.C. Hsi, M.J. Rood, M. Rostam-Abadi, S. Chen, R. Chang, Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs), Environ Sci Technol, 35 (2001) 2785-2791.
[111] C.T. Chiou, J. Cheng, W.N. Hung, B. Chen, T.F. Lin, Resolution of adsorption and partition components of organic compounds on black Carbons, Environ Sci Technol, 49 (2015) 9116-9123.
[112] R. Efroymson, G. Suter, B. Sample, D. Jones, Preliminary remediation goals for ecological endpoints, in, Oak Ridge National Lab., 1996.
[113] H. Cheng, Y. Hu, Mercury in municipal solid waste in China and its control: a review, Environ Sci Technol, 46 (2012) 593-605.
[114] T. Zhang, B. Kim, C. Levard, B.C. Reinsch, G.V. Lowry, M.A. Deshusses, H. Hsu-Kim, Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides, Environ Sci Technol, 46 (2012) 6950-6958.
[115] A.M. Graham, G.R. Aiken, C.C. Gilmour, Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions, Environ Sci Technol, 46 (2012) 2715-2723.
[116] P. Liu, C.J. Ptacek, D.W. Blowes, R.C. Landis, Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy, J Hazard Mater, 308 (2016) 233-242.
[117] P. Liu, C.J. Ptacek, D.W. Blowes, Y.Z. Finfrock, R.A. Gordon, Stabilization of mercury in sediment by using biochars under reducing conditions, J Hazard Mater, 325 (2017) 120-128.
[118] S. Josefsson, M. Schaanning, G.S. Samuelsson, J.S. Gunnarsson, I. Olofsson, E. Eek, K. Wiberg, Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests, Environ Sci Technol, 46 (2012) 3343-3351.
[119] G.N. Bigham, K.J. Murray, Y. Masue-Slowey, E.A. Henry, Biogeochemical controls on methylmercury in soils and sediments: Implications for site management, Integr Environ Assess Manag, 13 (2017) 249-263.
[120] J.M. Benoit, C.C. Gilmour, R.P. Mason, G.S. Riedel, G.F. Riedel, Behavior of mercury in the Patuxent River estuary, Biogeochem, 40 (1998) 249-265.
[121] Y. Ting, C. Chen, B.L. Ch''ng, Y.L. Wang, H.C. Hsi, Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment, J Hazard Mater, 354 (2018) 116-124.
[122] B.D. Gibson, C.J. Ptacek, D.W. Blowes, S.D. Daugherty, Sediment resuspension under variable geochemical conditions and implications for contaminant release, J Soil Sediment, 15 (2015) 1644-1656.
[123] J.P.Y. Maa, L. Sanford, J.P. Halka, Sediment resuspension characteristics in Baltimore Harbor, Maryland, Mar Geol, 146 (1998) 137-145.
[124] D. Lin, Y.M. Cho, D. Werner, R.G. Luthy, Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon, Environ Sci Technol, 48 (2014) 1175-1183.
[125] K. Norrish, The Swelling of Montmorillonite, Discuss Faraday Soc, 18 (1954) 120-134.
[126] J.W. Hosterman, Bentonite and Fuller''s earth resources of the United States, in, 1985.
[127] Y. Fernandez-Nava, M. Ulmanu, I. Anger, E. Maranon, L. Castrillon, Use of granular bentonite in the removal of mercury (II), cadmium (II) and lead (II) from aqueous solutions, Water Air Soil Poll, 215 (2011) 239-249.
[128] Y. Zhu, L.Q. Ma, B. Gao, J.C. Bonzongo, W. Harris, B. Gu, Transport and interactions of kaolinite and mercury in saturated sand media, J Hazard Mater, 213-214 (2012) 93-99.
[129] C. Green-Ruiz, Adsorption of mercury(II) from aqueous solutions by the clay mineral montmorillonite, Bull Environ Contam Toxicol, 75 (2005) 1137-1142.
[130] W. Zhu, Y. Song, G.A. Adediran, T. Jiang, A.T. Reis, E. Pereira, U. Skyllberg, E. Bjorn, Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter, Geochim Cosmochim Acta, 220 (2018) 158-179.
[131] S. Bachmaf, B. Planer-Friedrich, B.J. Merkel, Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite, Radiochim Acta, 96 (2008) 359-366.
[132] S.M. Rao, A. Sridharan, Mechanism of sulfate adsorption by kaolinite, Clay Clay Miner, 32 (1984) 414-418.
[133] C. Gilmour, E. Henry, Mercury methylation by sulfate-reducing bacteria-biogeochemical and pure culture studies, in: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036, 1992, pp. 140-GEOC.
[134] C. Gilmour, D. Krabbenhoft, W. Orem, G. Aiken, E. Roden, Appendix 3B-2: status report on ACME studies on the control of mercury methylation and bioaccumulation in the Everglades, J South Florida Environmental Report, 1 (2007) 3B-2.
[135] S.E. Rothenberg, X.B. Feng, Mercury cycling in a flooded rice paddy, J Geophys Res-Biogeo, 117 (2012).
[136] C. Gilmour, J.T. Bell, A.B. Soren, G. Riedel, G. Riedel, A.D. Kopec, R.A. Bodaly, Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment, Sci Total Environ, 640-641 (2018) 555-569.
[137] N.W. Johnson, D.D. Reible, L.E. Katz, Biogeochemical changes and mercury methylation beneath an in-situ sediment cap, Environ Sci Technol, 44 (2010) 7280-7286.
[138] A. Mucci, G. Bernier, C. Guignard, Mercury remobilization in Saguenay Fjord (Quebec, Canada) sediments: Insights following a mass-flow event and its capping efficiency, Appl Geochem, 54 (2015) 13-26.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔