(3.215.180.226) 您好!臺灣時間:2021/03/06 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林立峰
研究生(外文):Li-Fong Lin
論文名稱:以犧牲陽極加藥浮除全氟辛酸之研究
論文名稱(外文):Removing PFOA by Flotation Using Sacrificial Anode
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Shang-Lien Lo
口試委員:林進榮劉雅瑄
口試日期:2019-06-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:全氟辛酸電混凝曝氣浮除犧牲陽極
DOI:10.6342/NTU201901122
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全氟辛酸(PFOA)為一工業合成之介面活性劑,常被廣泛地應用當作抗油抗水的塗料。PFOA在自然環境中十分穩定,不易被降解,同時具有生物累積性與生物毒性,在國際間已引起高度的關注與管制,目前已有許多研究關於PFOA的去除與降解,如超聲波、光降解、過硫酸鹽催化、過濾與吸附等等。其中,電化學與浮除法是反應時間較短、且效果顯著的方法。
本研究透過電混凝反應中的犧牲陽極釋出金屬離子,結合混凝與曝氣浮除快速將汙染物去除,並在過程中探討pH值的變化。研究顯示,在鐵、鋁、鋅三者金屬中,鋅的處理效果最佳,隨電流密度上升,反應速度也會增加,由於鋅金屬形成之氫氧化物具有良好的架橋吸附效果,因此能顯著去除溶液中的PFOA,在電流密度37.5 mA/cm2 下,鋅金屬電極可在2分鐘內達到98 %的PFOA去除效果;電流密度為6.25 mA/cm2 時,反應也在12分鐘達到97 %的去除效果。
在pH值對浮除效果的影響的實驗中,測試不同pH的條件下,添加Al金屬進行曝氣。結果顯示,Al金屬在pH=5時因生成帶大量正電的Al13物質,與帶負電之PFOA形成穩定的氣泡被曝氣至表面,曝氣5分鐘後可達98%的去除率。
電混凝浮除法中,電解質濃度由2 mM提高至20 mM,可些微提高去除率,但操作電壓由20 V下降至2.5 V,可有效降低能耗;此外,反應會受陰離子種類的影響,溶液中若存在負電性越高之陰離子,會使去除效果明顯降低。
反應產生之膠羽透過傅利葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR)分析,於穿透光譜的結果中可發現C-F2與C-F3之特徵峰值出現,說明PFOA被吸附於膠羽中,以達去除效果。證實透過犧牲陽極產出之金屬離子能有效去除水中PFOA。
Perfluorooctanoic acid (PFOA) is an industrial synthetic surfactant which is widely used as an oil and water resistant coating. PFOA is very stable in the natural environment, which means it cannot be degraded easily. Meanwhile, a lot of countries have paid high attention to PFOA due to its bioaccumulation and biological toxicity. There have been many studies on the removal and degradation of PFOA, such as ultrasound, photolysis, persulfate catalysis, filtration and adsorption, and so on. The method combined with electrochemistry and floatation is effective and efficient way to remove PFOA in water.
In this study, the metal ions were released by the sacrificial anode in the electrocoagulation reaction. By using electrocoagulation and floatation simultaneously, contaminants could be removed rapidly. Also, the pH value was discussed in the process. Studies have shown that among the metals of iron, aluminum and zinc, zinc has the best efficiency. As the current density increased, the reaction rate accelerated at same time. Since the hydroxide formed by zinc metal had an excellent performance on bridging adsorption , At a current density of 37.5 mA/cm2, the zinc metal electrode achieved 98% removal rate of PFOA in 2 minutes. At a current density of 6.25 mA/cm2, the reaction could reach 97 % removal rate in 12 minutes respectively.
In the experiment of the effect of pH on the floating, aluminum ions were added for aeration under conditions of different pH values. The results showed that the Al metal formed Al13 substance at pH=5, which had a large amount of positive charges. Al13 formed a stable bubble with the negatively charged contaminant such as PFOA, then aerated to the surface, reaching about 98 % removal rate after 5 minutes of aeration. Moreover, raising the electrolyte concentration could both increase the removal efficiency and lower the power demand. In addition, the reaction was affected by the type of anions. The presence of an anion with higher negative charges resulted in a significant reduction in the removal rate.
The flocs produced by the reaction were analyzed by Fourier-transform infrared spectroscopy (FTIR). The peaks of C-F2 and C-F3 were found in the results of the spectra, indicating that PFOA was adsorbed in the flocs. It was confirmed that the metal ions produced by the sacrificial anode can effectively remove the PFOA in the water.
口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 5
2.1 PFOA的特性與危害 5
2.1.1全氟化合物之基本性質 5
2.1.2全氟化合物之歷史背景 6
2.1.3全氟化合物之危害特性 7
2.1.4全氟化合物之處理方法 9
2.2 曝氣浮除 12
2.2.1 浮除技術原理 12
2.3 電解反應 15
2.3.1 電解反應原理 15
2.3.2 法拉第定律 16
2.3.3 電流效率 16
2.4 電混凝法 17
2.4.1 電混凝介紹 17
2.4.2 電混凝與傳統混凝的比較 18
2.4.3 電混凝法應用於去除全氟化合物 21
第三章 研究方法 26
3.1 實驗研究架構 26
3.2 實驗藥品 29
3.3 實驗設備與儀器 30
3.4 實驗步驟 32
3.4.1實驗架設 32
3.4.2 PFOA電混凝浮除試驗 33
3.4.3鋁對PFOA浮除之效果 33
3.4.4陰離子與電解質對電混凝浮除之影響 34
3.4.5膠羽浮沫之FTIR特性分析 34
3.5 分析方法 35
第四章 結果與討論 38
4.1 PFOA之背景試驗 38
4.1.1 PFOA 曝氣實驗 38
4.1.2 未添加電解質之PFOA電混凝浮除試驗 38
4.2電極種類對PFOA去除率之影響 40
4.2.1 鋁金屬電極 40
4.2.2鋅金屬電極 42
4.2.3 鐵金屬電極 44
4.3電流密度對PFOA去除率之影響 46
4.4鋁離子曝氣浮除PFOA之試驗 48
4.5陰離子與電解質濃度對PFOA去除率之影響 50
4.5.1 陰離子對去除率的影響 50
4.5.2 電解質濃度對去除率的影響 51
4.6膠羽浮沫之特性分析 53
第五章 結論與建議 56
5.1 結論 56
5.2 建議 57
參考文獻 58
附錄 62
1.Zhao, Y.G., C.K.C. Wong, and M.H. Wong, Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on asian countries. Chemosphere, 2012. 89(4): p. 355-368.
2.Jian, J.M., Y. Guo, L. Zeng, L. Liang-Ying, X. Lu, F. Wang, and E.Y. Zeng, Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environment International, 2017. 108: p. 51-62.
3.Ye, F., Y. Zushi, and S. Masunaga, Survey of perfluoroalkyl acids (PFAAs) and their precursors present in japanese consumer products. Chemosphere, 2015. 127: p. 262-268.
4.Niu, J., Y. Li, E. Shang, Z. Xu, and J. Liu, Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 2016. 146: p. 526-538.
5.Du, Z., S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, and G. Yu, Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. Journal of Hazardous Materials, 2014. 274: p. 443-454.
6.Lee, Y.C., P.Y. Wang, S.L. Lo, and C.P. Huang, Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 2017. 173: p. 280-285.
7.Yang, B., Y. Han, G. Yu, Q. Zhuo, S. Deng, J. Wu, and P. Zhang, Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chemical Engineering Journal, 2016. 303: p. 384-390.
8.Chen, M.H., E.H. Ha, T.W. Wen, Y.N. Su, G.W. Lien, C.Y. Chen, P.C. Chen, and W.S. Hsieh, Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLOS ONE, Vol. 7. 2012. e42474.
9.Viberg, H. and P. Eriksson, Chapter 47 - perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), in Reproductive and developmental toxicology, R.C. Gupta, Editor. 2011, Academic Press: San Diego. p. 623-635.
10.Nakayama, S., K. Harada, K. Inoue, K. Sasaki, B. Seery, N. Saito, and A. Koizumi, Distributions of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in japan and their toxicities. Environmental Science & Technology, Vol. 12. 2005. 293-313.
11.Dietz, R., R. Bossi, F.F. Rigét, C. Sonne, and E.W. Born, Increasing perfluoroalkyl contaminants in east greenland polar bears (ursus maritimus): A new toxic threat to the arctic bears. Environmental Science & Technology, 2008. 42(7): p. 2701-2707.
12.Olsen, G.W., J.M. Burris, J.E. David, W.F. John, M.S. Andrew, J.L. Butenhoff, and L.R. Zobel, Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives, 2007. 115(9): p. 1298-1305.
13.Seacat, A.M., P.J. Thomford, K.J. Hansen, L.A. Clemen, S.R. Eldridge, C.R. Elcombe, and J.L. Butenhoff, Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 2003. 183(1): p. 117-131.
14.Johansson, N., A. Fredriksson, and P. Eriksson, Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. NeuroToxicology, 2008. 29(1): p. 160-169.
15.Case, M.T., R.G. York, and M.S. Christian, Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. International Journal of Toxicology, 2001. 20(2): p. 101-109.
16.Wang, Y., H. Lin, F. Jin, J. Niu, J. Zhao, Y. Bi, and Y. Li, Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of The Total Environment, 2016. 557-558: p. 542-550.
17.Braeken, L., B. Bettens, K. Boussu, P. Van der Meeren, J. Cocquyt, J. Vermant, and B. Van der Bruggen, Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. Journal of Membrane Science, 2006. 279(1): p. 311-319.
18.Tang, C.Y., Q.S. Fu, A.P. Robertson, C.S. Criddle, and J.O. Leckie, Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 2006. 40(23): p. 7343-7349.
19.Fujii, S., C. Polprasert, S. Tanaka, N. Lien, and Y. Qiu, New pops in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper. Journal of Water Supply: Research and Technology - Aqua ,Vol. 56. 2007.
20.Hori, H., A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa, and R. Arakawa, Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 2005. 39(7): p. 2383-2388.
21.Stevenson, D.P., The strengths of chemical bonds. Journal of the American Chemical Society, 1955. 77(8): p. 2350-2350.
22.Chen, J. and P. Zhang, Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate.Water science and technology,Vol. 54. 2006. 317-25.
23.Ratoarinoro, F. Contamine, A.M. Wilhelm, J. Berlan, and H. Delmas, Activation of a solid-liquid chemical reaction by ultrasound. Chemical Engineering Science, 1995. 50(3): p. 554-558.
24.Chemat, F., P.G.M. Teunissen, S. Chemat, and P.V. Bartels, Sono-oxidation treatment of humic substances in drinking water. Ultrasonics Sonochemistry, 2001. 8(3): p. 247-250.
25.Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, and Y. Maeda, Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 2005. 39(9): p. 3388-3392.
26.Khuntia, S., S.K. Majumder, and P. Ghosh, Microbubble-aided water and wastewater purification: A review. Reviews in Chemical Engineering, 2012. 28(4-6): p. 191-221.
27.Yang, X., X. Huang, and T. Qiu, Recovery of zinc from cyanide tailings by flotation. Minerals Engineering, 2015. 84: p. 100-105.
28.Wang, L., Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 2015. 70: p. 77-91.
29.Shammas, N. and G. F. Bennett, Principles of air flotation technology. 2010. 1-47.
30.Saththasivam, J., K. Loganathan, and S. Sarp, An overview of oil–water separation using gas flotation systems. Chemosphere, 2016. 144: p. 671-680.
31.Vik, E.A., D.A. Carlson, A.S. Eikum, and E.T. Gjessing, Electrocoagulation of potable water. Water Research, 1984. 18(11): p. 1355-1360.
32.Cheng, R.L., Group interest in treating words borrowed into mandarin and taiwanese. Anthropological Linguistics, 1985. 27: p. 177-189.
33.Mollah, M.Y.A., R. Schennach, J.R. Parga, and D.L. Cocke, Electrocoagulation (EC) — science and applications. Journal of Hazardous Materials, 2001. 84(1): p. 29-41.
34.Endyuskin, P.N., S.V. Selezenkin, and K.M. Dyumaev, J. Appl. Chem. (USSR), 1983. 56: p. 1100.
35.Wilcock, A.E. and S.P. Hay, Can. Textile J., 1991. 108(4): p. 37.
36.Wilcock, A., J. Tebbens, F. Fuss, J. Wanger, and M. Brewster, J. Text. Chem. Color, 1992. 24: p. 29.
37.Everything you want to know about coagulation & flocculation. 1993, Staunton, Va.: Zeta-Meter, Inc.
38.Liu, Y., X.M. Hu, Y. Zhao, J. Wang, M.X. Lu, F.H. Peng, and J. Bao, Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 2018. 201: p. 303-309.
39.Xiao, F., B. Zhang, and C. Lee, Effects of low temperature on aluminum(iii) hydrolysis: Theoretical and experimental studies. Journal of Environmental Sciences, 2008. 20(8): p. 907-914.
40.Degen, A. and M. Kosec, Effect of ph and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society, 2000. 20(6): p. 667-673.
41.Wang, P., R. Jiao, L. Liu, F. Xiao, G. An, and D. Wang, Optimized coagulation pathway of al13: Effect of in-situ aggregation of al13. Chemosphere, 2019.
42.Soares, B.M.C., S.T. Dantas, and C.A.R. Anjos, Corrosion of aluminum for beverage packaging in acidic media containing chlorides and copper ions. Journal of Food Process Engineering, 2017. 40(6): p. 8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔