(54.236.58.220) 您好!臺灣時間:2021/03/05 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:粘曉菁
研究生(外文):Hsiao-Ching Nien
論文名稱:內毒素血症相關蛋白質, 脂多醣結合蛋白質在病毒性及代謝性發炎的角色
論文名稱(外文):The Roles of Endotoxemia-related Protein, Lipopolysaccharide-binding Protein in Viral and Metabolic Inflammation
指導教授:楊偉勛楊偉勛引用關係高嘉宏高嘉宏引用關係許金川許金川引用關係
指導教授(外文):Wei-Shiung YangJia-Horng KaoJin-Chuan Sheu
口試委員:戴嘉言林文元
口試委員(外文):Chia-Yen DaiWen-Yuan Lin
口試日期:2019-03-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:114
中文關鍵詞:內毒素血症脂多醣結合蛋白質LBPHCV干擾素療法非干擾素療法肥胖體重管理NAFLD纖維化數值NFS
DOI:10.6342/NTU201902906
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究顯示內毒素血症相關蛋白質(脂多醣結合蛋白質,LBP)與許多代謝疾病有關,如:肥胖,糖尿病和非酒精性脂肪性肝病(NALFD),且減重手術後血清中LBP濃度會降低。然而,非手術的體重管理後肥胖病人血清LBP變化目前尚不清楚。此外,由於慢性C型肝炎病毒(HCV)感染與代謝疾病也相關,LBP和HCV感染之間的關係值得進一步研究。此論文旨在探討經過一年非手術體重管理後,肥胖病人血清LBP濃度的變化,並研究C型肝炎病人完成干擾素療法或非干擾素療法後,其血清LBP濃度的變化。
  研究招募了120名非HCV感染者,42名使用長效型干擾素與雷巴威林治療的HCV感染者和17名口服直接作用型抗病毒藥物治療的HCV感染者進行病例對照研究。此外,還招募62名肥胖受試者,39名過重受試者和21名身體質量指數(BMI)正常的受試者參加為期一年的體重管理計劃。研究中收集這些病人的基本資料、身體組成分析、臨床數據、血清LBP濃度和腹部超音波檢查結果。所有受試者皆在進入研究前,提供國立臺灣大學醫學院附設醫院研究倫理委員會已核准之書面知情同意書。
  HCV感染者在干擾素療法前分析其血清LBP濃度發現,其血清LBP顯著高於非HCV感染者(34.6 ± 7.3對20.0 ± 6.4 μg/ mL; p值 <0.001),尤其是肥胖的HCV感染者其血清LBP濃度最高(36.1 ± 7.8 μg/ mL)。HCV感染者不論是否使用干擾素療法或非干擾素療法,於持續病毒學抑制反應的這個時間點發現,其血清LBP濃度皆顯著下降(干擾素組: 27.4 ± 6.6對34.6 ± 7.3 μg/ mL,p值 <0.001; 非干擾素組: 15.9 ± 4.4對22.2 ± 5.7 μg/ mL,p值= 0.001)。經多變量分析後發現,治療前的血清LBP與BMI、糖化血色素、丙氨酸轉氨酶(ALT)和HCV感染皆具獨立相關性。再者,治療前血清LBP僅與ALT和脂肪肝有顯著相關。
另外,一年體重管理之前,肥胖和過重受試者的血清LBP濃度顯著高於正常組(其值分別為30.9 ± 7.4和29.6 ± 6.3對23.1 ± 5.6 μg/ mL,p值 <0.001)且經多變量分析發現,血清LBP與肥胖者的高敏感度C-反應蛋白(hs-CRP)和NAFLD纖維化數值(NFS)顯著相關。而經一年的體重管理後,肥胖者的血清LBP濃度顯著降低至26.5±7.1 μg/ mL(p值<0.001)。多元線性回歸分析後發現,肥胖者的血清LBP變化量與hs-CRP,白血球數目和NFS的變化量都具顯著相關。
  在體外細胞研究中,此研究利用與牛血清白蛋白結合之棕櫚酸酯誘發肝癌細胞株形成脂肪肝後發現,肝細胞內LBP表現量隨著誘發時間而顯著增加。
  總結以上研究發現,HCV感染者不論是否使用干擾素治療後,其血清LBP濃度皆顯著下降,此表示血清LBP的其一來源為病毒性發炎。而經一年非手術體重管理後,肥胖受試者血清LBP濃度顯著降低且加上血清LBP與BMI或NAFLD呈現正相關,這些結果顯示血清LBP的另一來源為代謝性發炎。因此,LBP可同時做為體內感染性源和非感染性源的發炎性生物標誌物。再者,血清LBP濃度變化與hs-CRP和NFS的變化也呈現正相關,這意味著LBP不僅是一種發炎症生物標誌物,也將有潛力作為評估NAFLD肝纖維化的非侵入性生物標誌物。
Several previous studies show that the endotoxemia-related biomarker, lipopolysaccharide-binding protein (LBP), is associated with metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). The level of LBP is reduced after surgical weight loss. However, the change of serum LBP in obese patients after non-surgical weight management is still unclear at present. Moreover, since chronic hepatitis C virus (HCV) infection is associated with metabolic derangements, the relationship between LBP and HCV infection deserves additional studies. Our study aims to investigate the change of serum LBP levels in obese subjects after one-year medical weight management and investigate the change of LBP level in HCV-infected subjects after interferon-based or interferon-free therapy.
We recruited 120 non-HCV subjects, 42 and 17 HCV-infected subjects respectively treated with peginterferon α-2a/ribavirin and direct-acting antiviral drugs for a case-control study. In the second study, a total of 62 subjects with obesity, 39 subjects with overweight, and 21 subjects with normal body mass index (BMI) were enrolled for a one-year weight management program. Basic information, body composition analysis, clinical data, serum LBP level, and abdominal ultrasonography findings were collected. All the subjects provided written informed consent before being enrolled. These studies were approved by the Research Ethics Committee of the National Taiwan University Hospital.
Serum LBP level was significantly higher in HCV-infected subjects before interferon-based therapy than non-HCV subjects (34.6 ± 7.3 versus 20.0 ± 6.4 μg/mL; p-value < 0.001), especially in HCV-infected subjects with obesity (36.1 ± 7.8 μg/mL). In HCV-infected subjects, the LBP level significantly decreased at sustained virologic response (27.4 ± 6.6 versus 34.6 ± 7.3 μg/mL, p-value < 0.001; 15.9 ± 4.4 versus 22.2 ± 5.7 μg/mL, p-value = 0.001), regardless of interferon-based or interferon-free therapy. The levels of serum LBP at baseline was independently associated with BMI, hemoglobin A1c, alanine aminotransferase (ALT) and HCV infection in non-HCV and HCV-infected subjects by multivariate linear regression analyses. Moreover, serum LBP was only associated with ALT and fatty liver in HCV-infected subjects before interferon-based therapy.
Before one-year weight management, the serum LBP levels of the obese and overweight subjects were significantly higher than that of the normal group (30.9±7.4 and 29.6±6.3 versus 23.1±5.6 μg/mL, respectively, p<0.001). In the multivariate analyses, LBP was associated with high sensitive C-reactive protein (hs-CRP) and NAFLD fibrosis score (NFS) before weight management in the obese group. After one-year weight management, serum LBP in the subjects with obesity was significantly reduced to 26.5±7.1 μg/mL (p-value < 0.001). The change of LBP in response to weight management was significantly related to the changes of hs-CRP, leukocyte count and NFS by multivariate linear regression analyses also in the obese group.
In vitro study, the increased expression of LBP in fatty liver induced by bovine serum albumin conjugated palmitate was observed in human immortalize hepatoma cell line (HuH-7).
In summary, the serum level of the endotoxemia-related biomarker, LBP, decreased either after interferon-based or interferon-free therapy in HCV-infected subjects, suggesting a hepatic origin of LBP in viral inflammation. After one-year of non-surgical weight management, the serum level of LBP significantly lowered in the obese subjects. The association of LBP with BMI or NAFLD in these results suggests the other origin of LBP in metabolic inflammation. All together, LBP may serve as an inflammatory biomarker of both infectious and non-infectious origins. In addition, a positive correlation was found between the change of serum LBP levels and the change in hs-CRP and NFS, implying that LBP is not only an inflammatory biomarker, but may also be a potential biomarker like NFS as a non-invasive test for the evaluation of liver fibrosis in NAFLD.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract vi
Introduction 1
1. Endotoxemia 1
2. LPS and LBP 2
3. LBP and acute or chronic inflammatory diseases in human studies 4
4. HCV and metabolic diseases 6
5. HCV infection and LBP 7
6. Obesity and inflammation 8
7. The pathophysiology of NAFLD and NASH 9
8. NAFLD fibrosis score (NFS) and fibrosis-4 (FIB-4) index 11
9. Obesity and LBP 12
10. NAFLD and LBP in human study 13
11. LBP studies in animal and cell line models of liver diseases 14
12. NAFLD and palmitate 14
13. The managements of obesity and NAFLD 15
14. The treatments of HCV 15
15. Hypothesis 16
16. Study goal and specific aims 17
Subjects and Methods 19
1. HCV-infected patients’ enrollment and treatments 19
2. Obese subjects’ enrollment and treatments 20
3. Biochemical analysis of human blood samples 21
4. LBP assay 22
5. Abdominal ultrasound examination and evaluative scores 23
6. Cell biology investigation 25
7. Statistical Analysis 28
Results 30
Part I. LBP and viral inflammation 30
1-1. High LBP concentrations in HCV-infected patients before anti-HCV therapy 30
1-2. Serum LBP decreased after interferon-based therapy 31
1-3. Serum LBP decreased after interferon-free therapy 33
Part II. LBP and metabolic inflammation 34
2-1. The obese/overweight subjects had higher serum LBP 34
2-2. The characteristics of groups with different BMI after one-year weight 34
2-3. Weight reduction led to decreased levels of LBP 35
2-4. The relationship between LBP and NFS in the obese group 36
Part III. LBP and metabolic inflammation in cell biology investigation 38
Discussion 40
Part I. LBP and viral inflammation 40
Part II. LBP and metabolic inflammation 44
Part III. LBP and metabolic inflammation in cell biology investigation 50
Perspectives 51
References 58
Tables 82
Figures 100
附錄 114
Alexopoulou, A., D. Agiasotelli, L. E. Vasilieva, and S. P. Dourakis. 2017. Bacterial translocation markers in liver cirrhosis. Ann Gastroenterol. 30(5): 486-97.
Angulo, P., J. M. Hui, G. Marchesini, E. Bugianesi, J. George, G. C. Farrell, et al. 2007. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 45(4): 846-54.
Apovian, C. M., W. T. Garvey, and D. H. Ryan. 2015. Challenging obesity: Patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. Obesity (Silver Spring). 23 Suppl 2: S1-S26.
Arienti, V., L. Aluigi, S. Pretolani, E. Accogli, L. Polimeni, A. Domanico, et al. 2012. Ultrasonography (US) and non-invasive diagnostic methods for non-alcoholic fatty liver disease (NAFLD) and early vascular damage. Possible application in a population study on the metabolic syndrome (MS). Intern Emerg Med. 7 Suppl 3: S283-90.
Asrih, M., and F. R. Jornayvaz. 2014. Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr. 33(2): 186-90.
Baccala, R., K. Hoebe, D. H. Kono, B. Beutler, and A. N. Theofilopoulos. 2007. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med. 13(5): 543-51.
Baker, R. G., M. S. Hayden, and S. Ghosh. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13(1): 11-22.
Ballestri, S., F. Nascimbeni, D. Romagnoli, E. Baldelli, G. Targher, and A. Lonardo. 2016. Type 2 Diabetes in Non-Alcoholic Fatty Liver Disease and Hepatitis C Virus Infection--Liver: The "Musketeer" in the Spotlight. Int J Mol Sci. 17(3): 355.
Behrendt, D., J. Dembinski, A. Heep, and P. Bartmann. 2004. Lipopolysaccharide binding protein in preterm infants. Arch Dis Child Fetal Neonatal Ed. 89(6): F551-4.
Belardelli, F., and I. Gresser. 1996. The neglected role of type I interferon in the T-cell response: implications for its clinical use. Immunology Today. 17(8): 369-72.
Bray, G. A., G. Fruhbeck, D. H. Ryan, and J. P. Wilding. 2016. Management of obesity. Lancet. 387(10031): 1947-56.
Bugianesi, E., U. Pagotto, R. Manini, E. Vanni, A. Gastaldelli, R. de Iasio, et al. 2005. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab. 90(6): 3498-504.
Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56(7): 1761-72.
Cani, P. D., R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, et al. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 57(6): 1470-81.
Cao, J., D. L. Dai, L. Yao, H. H. Yu, B. Ning, Q. Zhang, et al. 2012. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem. 364(1-2): 115-29.
Chalasani, N., Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, et al. 2018. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 67(1): 328-57.
Chalasani, N., Z. Younossi, J. E. Lavine, A. M. Diehl, E. M. Brunt, K. Cusi, et al. 2012. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 142(7): 1592-609.
Chen, C. J., L. Y. Wang, and M. W. Yu. 2000. Epidemiology of hepatitis B virus infection in the Asia-Pacific region. J Gastroenterol Hepatol. 15 Suppl: E3-6.
Chen, K. F., C. H. Chaou, J. Y. Jiang, H. W. Yu, Y. H. Meng, W. C. Tang, et al. 2016. Diagnostic Accuracy of Lipopolysaccharide-Binding Protein as Biomarker for Sepsis in Adult Patients: A Systematic Review and Meta-Analysis. PLoS One. 11(4): e0153188.
Chitturi, S., V. W. Wong, and G. Farrell. 2011. Nonalcoholic fatty liver in Asia: Firmly entrenched and rapidly gaining ground. J Gastroenterol Hepatol. 26 Suppl 1: 163-72.
Citronberg, J. S., L. R. Wilkens, L. Le Marchand, U. Lim, K. R. Monroe, M. A. J. Hullar, et al. 2018. Plasma lipopolysaccharide-binding protein and colorectal cancer risk: a nested case-control study in the Multiethnic Cohort. Cancer Causes Control. 29(1): 115-23.
Clement, K. 2011. Bariatric surgery, adipose tissue and gut microbiota. Int J Obes (Lond). 35 Suppl 3: S7-15.
Clemente-Postigo, M., W. Oliva-Olivera, L. Coin-Araguez, B. Ramos-Molina, R. M. Giraldez-Perez, S. Lhamyani, et al. 2019. Metabolic endotoxemia promotes adipose dysfunction and inflammation in human obesity. Am J Physiol Endocrinol Metab. 316(2): E319-E32.
Cohen, J. 2000. The detection and interpretation of endotoxaemia. Intensive Care Med. 26 Suppl 1: S51-6.
Cohen, J. 2002. The immunopathogenesis of sepsis. Nature. 420(6917): 885-91.
Cotroneo, T. M., J. A. Nemzek-Hamlin, J. Bayliss, and G. L. Su. 2012. Lipopolysaccharide binding protein inhibitory peptide alters hepatic inflammatory response post-hemorrhagic shock. Innate Immun. 18(6): 866-75.
Creely, S. J., P. G. McTernan, C. M. Kusminski, M. Fisher f, N. F. Da Silva, M. Khanolkar, et al. 2007. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 292(3): E740-7.
Dalzill, C., A. Nigam, M. Juneau, V. Guilbeault, E. Latour, P. Mauriege, et al. 2014. Intensive lifestyle intervention improves cardiometabolic and exercise parameters in metabolically healthy obese and metabolically unhealthy obese individuals. Can J Cardiol. 30(4): 434-40.
Dowman, J. K., J. W. Tomlinson, and P. N. Newsome. 2010. Pathogenesis of non-alcoholic fatty liver disease. QJM. 103(2): 71-83.
Erwin, P. J., H. Lewis, S. Dolan, P. S. Tobias, R. R. Schumann, N. Lamping, et al. 2000. Lipopolysaccharide binding protein in acute pancreatitis. Crit Care Med. 28(1): 104-9.
Fukui, H., B. Brauner, J. C. Bode, and C. Bode. 1991. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol. 12(2): 162-9.
Gavalda-Navarro, A., J. M. Moreno-Navarrete, T. Quesada-Lopez, M. Cairo, M. Giralt, J. M. Fernandez-Real, et al. 2016. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia. 59(10): 2208-18.
Gonzalez-Quintela, A., M. Alonso, J. Campos, L. Vizcaino, L. Loidi, and F. Gude. 2013. Determinants of Serum Concentrations of Lipopolysaccharide-Binding Protein (LBP) in the Adult Population: The Role of Obesity. PLoS One. 8(1): e54600.
Gonzalez-Sarrias, A., M. Romo-Vaquero, R. Garcia-Villalba, A. Cortes-Martin, M. V. Selma, and J. C. Espin. 2018. The Endotoxemia Marker Lipopolysaccharide-Binding Protein is Reduced in Overweight-Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial. Mol Nutr Food Res. 62(11): e1800160.
Graffy, P. M., and P. J. Pickhardt. 2016. Quantification of hepatic and visceral fat by CT and MR imaging: relevance to the obesity epidemic, metabolic syndrome and NAFLD. Br J Radiol. 89(1062): 20151024.
Grube, B. J., C. G. Cochane, R. D. Ye, C. E. Green, M. E. McPhail, R. J. Ulevitch, et al. 1994. Lipopolysaccharide binding protein expression in primary human hepatocytes and HepG2 hepatoma cells. J Biol Chem. 269(11): 8477-82.
Gubern, C., A. Lopez-Bermejo, J. Biarnes, J. Vendrell, W. Ricart, and J. M. Fernandez-Real. 2006. Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein. Diabetes. 55(1): 216-24.
Gunstone, F. D., John L. Harwood, and Albert J. Dijkstra. 2007. The Lipid Handbook, 3rd ed. Boca Raton: CRC Press ISBN 0849396883 | ISBN 978-0849396885.
Guo, J., and S. L. Friedman. 2010. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 3: 21.
Harte, A. L., N. F. da Silva, S. J. Creely, K. C. McGee, T. Billyard, E. M. Youssef-Elabd, et al. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond). 7: 15.
Haufe, S., S. Engeli, P. Kast, J. Bohnke, W. Utz, V. Haas, et al. 2011. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 53(5): 1504-14.
Health Promotion Administration, Ministry of Health and Welfare of Taiwan. 2011. Standard body mass index in adults. In, https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=542&pid=705.
Hernandez, C., F. Ortega, M. Garcia-Ramirez, M. Villarroel, J. Casado, L. Garcia-Pascual, et al. 2010. Lipopolysaccharide-binding protein and soluble CD14 in the vitreous fluid of patients with proliferative diabetic retinopathy. Retina. 30(2): 345-52.
Hickman, I. J., E. E. Powell, J. B. Prins, A. D. Clouston, S. Ash, D. M. Purdie, et al. 2003. In overweight patients with chronic hepatitis C, circulating insulin is associated with hepatic fibrosis: implications for therapy. J Hepatol. 39(6): 1042-8.
Ho, T. P., X. Zhao, A. B. Courville, J. D. Linderman, S. Smith, N. Sebring, et al. 2015. Effects of a 12-month moderate weight loss intervention on insulin sensitivity and inflammation status in nondiabetic overweight and obese subjects. Horm Metab Res. 47(4): 289-96.
Hsu, C. S., C. J. Liu, C. H. Liu, C. C. Wang, C. L. Chen, M. Y. Lai, et al. 2008. High hepatitis C viral load is associated with insulin resistance in patients with chronic hepatitis C. Liver Int. 28(2): 271-7.
Huang, C. J., J. K. Stewart, Y. Shibata, A. L. Slusher, and E. O. Acevedo. 2015. Lipopolysaccharide-binding protein and leptin are associated with stress-induced interleukin-6 cytokine expression ex vivo in obesity. Psychophysiology. 52(5): 687-94.
Hui, J. M., A. Sud, G. C. Farrell, P. Bandara, K. Byth, J. G. Kench, et al. 2003. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology. 125(6): 1695-704.
Isabela Andronescu, C., M. Roxana Purcarea, and P. Aurel Babes. 2018. The role of noninvasive tests and liver biopsy in the diagnosis of nonalcoholic fatty liver disease. J Med Life. 11(3): 243-46.
Jayashree, B., Y. S. Bibin, D. Prabhu, C. S. Shanthirani, K. Gokulakrishnan, B. S. Lakshmi, et al. 2014. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem. 388(1-2): 203-10.
Jenabian, M. A., V. Mehraj, C. T. Costiniuk, K. Vyboh, I. Kema, K. Rollet, et al. 2016. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients. J Acquir Immune Defic Syndr. 71(3): 254-62.
Jialal, I., S. Devaraj, A. Bettaieb, F. Haj, and B. Adams-Huet. 2015. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis. 241(1): 130-7.
Jin, C. J., A. J. Engstler, D. Ziegenhardt, S. C. Bischoff, C. Trautwein, and I. Bergheim. 2017. Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice. J Gastroenterol Hepatol. 32(3): 708-15.
Jirillo, E., L. Amati, L. Caradonna, B. Greco, R. Cozzolongo, R. Cuppone, et al. 1998. Soluble (s) CD14 and plasmatic lipopolysaccharides (LPS) in patients with chronic hepatitis C before and after treatment with interferon (IFN)-alpha. Immunopharmacol Immunotoxicol. 20(1): 1-14.
Jirillo, E., D. Caccavo, T. Magrone, E. Piccigallo, L. Amati, A. Lembo, et al. 2002. The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res. 8(5): 319-27.
Kahraman, A., J. P. Sowa, M. Schlattjan, S. Sydor, M. Pronadl, A. Wree, et al. 2013. Fetuin-A mRNA expression is elevated in NASH compared with NAFL patients. Clin Sci (Lond). 125(8): 391-400.
Kao, J. H. 2016. Hepatitis C virus infection in Taiwan: Past, present, and future. J Formos Med Assoc. 115(2): 65-6.
Kao, J. H., S. H. Ahn, R. N. Chien, M. Cho, W. L. Chuang, S. H. Jeong, et al. 2017. Urgency to treat patients with chronic hepatitis C in Asia. J Gastroenterol Hepatol. 32(5): 966-74.
Kheirandish-Gozal, L., E. Peris, Y. Wang, M. Tamae Kakazu, A. Khalyfa, A. Carreras, et al. 2014. Lipopolysaccharide-binding protein plasma levels in children: effects of obstructive sleep apnea and obesity. J Clin Endocrinol Metab. 99(2): 656-63.
Kim, K. E., J. S. Heo, S. Han, S. K. Kwon, S. Y. Kim, J. H. Kim, et al. 2018. Blood concentrations of lipopolysaccharide-binding protein, high-sensitivity C-reactive protein, tumor necrosis factor-alpha, and Interleukin-6 in relation to insulin resistance in young adolescents. Clin Chim Acta. 486: 115-21.
Kirschning, C. J., A. Unbehaun, G. Fiedler, W. Hallatschek, N. Lamping, D. Pfeil, et al. 1997. The transcriptional activation pattern of lipopolysaccharide binding protein (LBP) involving transcription factors AP-1 and C/EBP beta. Immunobiology. 198(1-3): 124-35.
Kitabatake, H., N. Tanaka, N. Fujimori, M. Komatsu, A. Okubo, K. Kakegawa, et al. 2017. Association between endotoxemia and histological features of nonalcoholic fatty liver disease. World J Gastroenterol. 23(4): 712-22.
Knobler, H., and S. Malnick. 2016. Hepatitis C and insulin action: An intimate relationship. World J Hepatol. 8(2): 131-8.
Knobler, H., and A. Schattner. 2005. TNF-{alpha}, chronic hepatitis C and diabetes: a novel triad. QJM. 98(1): 1-6.
Lee, Y. S., Y. H. Kim, Y. S. Jung, K. S. Kim, D. K. Kim, S. Y. Na, et al. 2017. Hepatocyte toll-like receptor 4 mediates lipopolysaccharide-induced hepcidin expression. Exp Mol Med. 49(12): e408.
Leoni, S., F. Tovoli, L. Napoli, I. Serio, S. Ferri, and L. Bolondi. 2018. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol. 24(30): 3361-73.
Lepper, P. M., M. E. Kleber, T. B. Grammer, K. Hoffmann, S. Dietz, B. R. Winkelmann, et al. 2011. Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease--results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis. 219(1): 291-7.
Lepper, P. M., C. Schumann, K. Triantafilou, F. M. Rasche, T. Schuster, H. Frank, et al. 2007. Association of lipopolysaccharide-binding protein and coronary artery disease in men. J Am Coll Cardiol. 50(1): 25-31.
Li, Q., V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang. 2013. Hepatitis C virus infection activates an innate pathway involving IKK-alpha in lipogenesis and viral assembly. Nat Med. 19(6): 722-9.
Liaw, Y. F., and C. M. Chu. 2009. Hepatitis B virus infection. Lancet. 373(9663): 582-92.
Lin, D. Y., I. S. Sheen, C. T. Chiu, S. M. Lin, Y. C. Kuo, and Y. F. Liaw. 1993. Ultrasonographic changes of early liver cirrhosis in chronic hepatitis B: a longitudinal study. J Clin Ultrasound. 21(5): 303-8.
Lone, J. B., W. Y. Koh, H. A. Parray, W. K. Paek, J. Lim, I. A. Rather, et al. 2018. Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microb Pathog. 124: 266-71.
MacParland, S. A., X. Z. Ma, L. Chen, R. Khattar, V. Cherepanov, M. Selzner, et al. 2016. Lipopolysaccharide and Tumor Necrosis Factor Alpha Inhibit Interferon Signaling in Hepatocytes by Increasing Ubiquitin-Like Protease 18 (USP18) Expression. Journal of Virology. 90(12): 5549-60.
Malaguarnera, M., M. Di Rosa, F. Nicoletti, and L. Malaguarnera. 2009. Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl). 87(7): 679-95.
Malhi, H., and G. J. Gores. 2008. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 28(4): 360-9.
Mamedova, L. K., K. Yuan, A. N. Laudick, S. D. Fleming, D. G. Mashek, and B. J. Bradford. 2013. Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells. J Nutr Biochem. 24(8): 1499-507.
Manco, M., L. Putignani, and G. F. Bottazzo. 2010. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 31(6): 817-44.
Marra, M., I. M. Sordelli, A. Lombardi, M. Lamberti, L. Tarantino, A. Giudice, et al. 2011. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 9: 171.
Mashek, D. G. 2013. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr. 4(6): 697-710.
Masuda, Y., H. Itabe, M. Odaki, K. Hama, Y. Fujimoto, M. Mori, et al. 2006. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res. 47(1): 87-98.
Matthews, D. R., J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28(7): 412-9.
Medici, V., M. R. Ali, S. Seo, C. A. Aoki, L. Rossaro, K. Kim, et al. 2010. Increased soluble leptin receptor levels in morbidly obese patients with insulin resistance and nonalcoholic fatty liver disease. Obesity (Silver Spring). 18(12): 2268-73.
Moreno-Navarrete, J. M., X. Escote, F. Ortega, M. Camps, W. Ricart, A. Zorzano, et al. 2015. Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. Diabetologia. 58(10): 2424-34.
Moreno-Navarrete, J. M., X. Escote, F. Ortega, M. Serino, M. Campbell, M. C. Michalski, et al. 2013. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 56(11): 2524-37.
Moreno-Navarrete, J. M., F. Ortega, M. Serino, E. Luche, A. Waget, G. Pardo, et al. 2012. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond). 36(11): 1442-9.
Nakabayashi, H., K. Taketa, K. Miyano, T. Yamane, and J. Sato. 1982. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42(9): 3858-63.
Nanbo, A., H. Nishimura, T. Muta, and S. Nagasawa. 1999. Lipopolysaccharide stimulates HepG2 human hepatoma cells in the presence of lipopolysaccharide-binding protein via CD14. Eur J Biochem. 260(1): 183-91.
Negro, F. 2014. Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J Hepatol. 61(1 Suppl): S69-78.
Neves, A. L., J. Coelho, L. Couto, A. Leite-Moreira, and R. Roncon-Albuquerque, Jr. 2013. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 51(2): R51-64.
Ng, M., T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono, et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 384(9945): 766-81.
Nier, A., A. Brandt, I. B. Conzelmann, Y. Ozel, and I. Bergheim. 2018. Non-Alcoholic Fatty Liver Disease in Overweight Children: Role of Fructose Intake and Dietary Pattern. Nutrients. 10(9): pii: nu10091329.
Nier, A., A. J. Engstler, I. B. Maier, and I. Bergheim. 2017. Markers of intestinal permeability are already altered in early stages of non-alcoholic fatty liver disease: Studies in children. PLoS One. 12(9): e0183282.
Nissar, A. U., L. Sharma, M. A. Mudasir, L. A. Nazir, S. A. Umar, P. R. Sharma, et al. 2017. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy. J Lipid Res. 58(9): 1855-68.
Nones, R. B., C. P. Ivantes, and M. L. A. Pedroso. 2017. Can FIB4 and NAFLD fibrosis scores help endocrinologists refer patients with non-alcoholic fat liver disease to a hepatologist? Arch Endocrinol Metab. 61(3): 276-81.
Nystrom, J., J. Stenkvist, A. Haggblom, O. Weiland, and P. Nowak. 2015. Low levels of microbial translocation marker LBP are associated with sustained viral response after anti-HCV treatment in HIV-1/HCV co-infected patients. PLoS One. 10(3): e0118643.
Opal, S. M., J. E. Palardy, M. N. Marra, C. J. Fisher, Jr., B. M. McKelligon, and R. W. Scott. 1994. Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet. 344(8920): 429-31.
Opal, S. M., P. J. Scannon, J. L. Vincent, M. White, S. F. Carroll, J. E. Palardy, et al. 1999. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis. 180(5): 1584-9.
Pang, J., W. Xu, X. Zhang, G. L. Wong, A. W. Chan, H. Y. Chan, et al. 2017. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 46(2): 175-82.
Pastor Rojo, O., A. Lopez San Roman, E. Albeniz Arbizu, A. de la Hera Martinez, E. Ripoll Sevillano, and A. Albillos Martinez. 2007. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis. 13(3): 269-77.
Pavcnik-Arnol, M., S. Hojker, and M. Derganc. 2007. Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med. 33(6): 1025-32.
Peng, J. H., T. Cui, Z. L. Sun, F. Huang, L. Chen, L. Xu, et al. 2012. Effects of Puerariae Radix Extract on Endotoxin Receptors and TNF-alpha Expression Induced by Gut-Derived Endotoxin in Chronic Alcoholic Liver Injury. Evid Based Complement Alternat Med. 2012: 234987.
Pereira, B. J., S. Sundaram, B. Snodgrass, P. Hogan, and A. J. King. 1996. Plasma lipopolysaccharide binding protein and bactericidal/permeability increasing factor in CRF and HD patients. J Am Soc Nephrol. 7(3): 479-87.
Petta, S., C. Camma, V. Di Marco, F. S. Macaluso, M. Maida, G. Pizzolanti, et al. 2011. Hepatic steatosis and insulin resistance are associated with severe fibrosis in patients with chronic hepatitis caused by HBV or HCV infection. Liver Int. 31(4): 507-15.
Pussinen, P. J., A. S. Havulinna, M. Lehto, J. Sundvall, and V. Salomaa. 2011. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care. 34(2): 392-7.
Regueiro, V., M. A. Campos, P. Morey, J. Sauleda, A. G. Agusti, J. Garmendia, et al. 2009. Lipopolysaccharide-binding protein and CD14 are increased in the bronchoalveolar lavage fluid of smokers. Eur Respir J. 33(2): 273-81.
Rohde, K., M. Keller, L. la Cour Poulsen, M. Bluher, P. Kovacs, and Y. Bottcher. 2018. Genetics and epigenetics in obesity. Metabolism: pii: S0026-495(18)30225-7.
Ruiz, A. G., F. Casafont, J. Crespo, A. Cayon, M. Mayorga, A. Estebanez, et al. 2007. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 17(10): 1374-80.
Saadeh, S., Z. M. Younossi, E. M. Remer, T. Gramlich, J. P. Ong, M. Hurley, et al. 2002. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology. 123(3): 745-50.
Sakura, T., T. Morioka, A. Shioi, Y. Kakutani, Y. Miki, Y. Yamazaki, et al. 2017. Lipopolysaccharide-binding protein is associated with arterial stiffness in patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol. 16(1): 62.
Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 31: 107-33.
Sayiner, M., P. Golabi, and Z. M. Younossi. 2019. Disease Burden of Hepatocellular Carcinoma: A Global Perspective. Dig Dis Sci.
Schumann, R. R. 2011. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochem Soc Trans. 39(4): 989-93.
Schumann, R. R., C. J. Kirschning, A. Unbehaun, H. P. Aberle, H. P. Knope, N. Lamping, et al. 1996. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 16(7): 3490-503.
Su, G. L., L. M. Hoesel, J. Bayliss, M. R. Hemmila, and S. C. Wang. 2010. Lipopolysaccharide binding protein inhibitory peptide protects against acetaminophen-induced hepatotoxicity. Am J Physiol Gastrointest Liver Physiol. 299(6): G1319-25.
Teixeira, T. F., M. C. Collado, C. L. Ferreira, J. Bressan, and C. Peluzio Mdo. 2012. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 32(9): 637-47.
Tilves, C. M., J. M. Zmuda, A. L. Kuipers, C. S. Nestlerode, R. W. Evans, C. H. Bunker, et al. 2016. Association of Lipopolysaccharide-Binding Protein With Aging-Related Adiposity Change and Prediabetes Among African Ancestry Men. Diabetes Care. 39(3): 385-91.
Toffanin, S., S. L. Friedman, and J. M. Llovet. 2010. Obesity, inflammatory signaling, and hepatocellular carcinoma-an enlarging link. Cancer Cell. 17(2): 115-7.
Trojova, I., M. Kozarova, D. Petrasova, Z. Malachovska, I. Paranicova, P. Joppa, et al. 2018. Circulating lipopolysaccharide-binding protein and carotid intima-media thickness in obstructive sleep apnea. Physiol Res. 67(1): 69-78.
Tseng, C. H., and C. Y. Wu. 2018. The gut microbiome in obesity. J Formos Med Assoc: pii: S0929-6646(18)30437-6.
Tseng, T. C., and J. H. Kao. 2017. Elimination of Hepatitis B: Is It a Mission Possible? BMC Med. 15(1): 53.
Umoh, F. I., I. Kato, J. Ren, P. L. Wachowiak, M. T. th Ruffin, D. K. Turgeon, et al. 2016. Markers of systemic exposures to products of intestinal bacteria in a dietary intervention study. Eur J Nutr. 55(2): 793-8.
Utsunomiya, H., Y. Yamamoto, E. Takeshita, Y. Tokumoto, F. Tada, T. Miyake, et al. 2017. Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH). J Gastroenterol. 52(8): 940-54.
Vallet-Pichard, A., V. Mallet, B. Nalpas, V. Verkarre, A. Nalpas, V. Dhalluin-Venier, et al. 2007. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology. 46(1): 32-6.
Verdam, F. J., S. S. Rensen, A. Driessen, J. W. Greve, and W. A. Buurman. 2011. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol. 45(2): 149-52.
Vespasiani-Gentilucci, U., S. Carotti, G. Perrone, C. Mazzarelli, G. Galati, A. Onetti-Muda, et al. 2015. Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. 35(2): 569-81.
Vilar-Gomez, E., Y. Martinez-Perez, L. Calzadilla-Bertot, A. Torres-Gonzalez, B. Gra-Oramas, L. Gonzalez-Fabian, et al. 2015. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 149(2): 367-78 e5; quiz e14-5.
Villar, J., L. Perez-Mendez, E. Espinosa, C. Flores, J. Blanco, A. Muriel, et al. 2009. Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis. PLoS One. 4(8): e6818.
Wang, S., Y. Zhao, N. Xia, W. Zhang, Z. Tang, C. Wang, et al. 2015. KPNbeta1 promotes palmitate-induced insulin resistance via NF-kappaB signaling in hepatocytes. J Physiol Biochem. 71(4): 763-72.
Wattacheril, J., and N. Chalasani. 2012. Nonalcoholic fatty liver disease (NAFLD): is it really a serious condition? Hepatology. 56(4): 1580-4.
Wei, Y., D. Wang, F. Topczewski, and M. J. Pagliassotti. 2006. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab. 291(2): E275-81.
Weinstock-Guttman, B., R. M. Ransohoff, R. P. Kinkel, and R. A. Rudick. 1995. The interferons: biological effects, mechanisms of action, and use in multiple sclerosis. Annals of Neurology. 37(1): 7-15.
Weiss, J. 2003. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against Gram-negative bacteria. Biochem Soc Trans. 31(Pt 4): 785-90.
Wong, V. W., G. L. Wong, H. Y. Chan, D. K. Yeung, R. S. Chan, A. M. Chim, et al. 2015. Bacterial endotoxin and non-alcoholic fatty liver disease in the general population: a prospective cohort study. Aliment Pharmacol Ther. 42(6): 731-40.
Wu, H. T., F. H. Lu, H. Y. Ou, Y. C. Su, H. C. Hung, J. S. Wu, et al. 2013. The role of Hepassocin in the development of non-alcoholic fatty liver disease. J Hepatol. 59(5): 1065-72.
Xiao, S., N. Fei, X. Pang, J. Shen, L. Wang, B. Zhang, et al. 2014. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 87(2): 357-67.
Yang, P. J., W. J. Lee, P. H. Tseng, P. H. Lee, M. T. Lin, and W. S. Yang. 2014. Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surg Obes Relat Dis. 10(6): 1182-7.
Yoshida, H., N. Kato, Y. Shiratori, M. Otsuka, S. Maeda, J. Kato, et al. 2001. Hepatitis C virus core protein activates nuclear factor kappa B-dependent signaling through tumor necrosis factor receptor-associated factor. J Biol Chem. 276(19): 16399-405.
Yu, L. C., J. T. Wang, S. C. Wei, and Y. H. Ni. 2012. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol. 3(1): 27-43.
Zhu, Q., H. Zhou, A. Zhang, R. Gao, S. Yang, C. Zhao, et al. 2016. Serum LBP Is Associated with Insulin Resistance in Women with PCOS. PLoS One. 11(1): e0145337.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔