跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖柏喻
研究生(外文):Po-Yu Liao
論文名稱:光線藉由自主感光視網膜神經細胞調控小鼠社交記憶
論文名稱(外文):Light history modulates social memory in mice through intrinsically photosensitive retinal ganglion cells
指導教授:陳示國
口試委員:王致恬周銘翊連正章
口試日期:2019-01-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:160
中文關鍵詞:自主感光視神經細胞視黑質社交記憶社交行為催產激素
DOI:10.6342/NTU201900276
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在哺乳動物之視網膜中,自主感光視神經細胞透過視黑質自身感光,並對於藍光最為敏感,其對於動物的生理時鐘,荷爾蒙恆定,瞳孔反射及認知行為當中,扮演相當重要的角色。在群居生活當中,社交行為扮演非常重要的一環,尤其對個體間至族群,社會結構的影響。而在過去人類研究當中,光線能影響我們在認知的行為表現,而究竟日常生活當中,環境的光線是如何影響我們的社交行為,其機制尚未明瞭,因此,我們結合不同基因轉殖鼠及行為學等實驗方式,探索其中的大腦神經迴路。從我們的研究結果發現,在接受一小時光照刺激後,小鼠的短期社交記憶表現受到影響,當部分自主感光視神經細胞亞型被去除時,小鼠的社交記憶形成則不受光線影響。此外,我們也發現神經性荷爾蒙催產激素可能參與其調控,催產素神經活性也可能間接的受到來自光線的刺激而改變其活性。綜合以上結果,自主感光視神經細胞及催產激素在光線調控小鼠社交記憶神經迴路中皆扮演舉足輕重的角色,然而,這些研究成果也為未來光線如何調控社交行為打開一道曙光。
In mammalian’s retinas, intrinsically photosensitive retinal ganglion cells (ipRGCs) can directly sense environmental light through photopigment melanopsin, which is most sensitive to blue light wavelength, independent of rods and cones. It has been shown that ipRGCs are important for circadian photoentrainment, pupil light reflex, sleep and mood regulation. In colony formation, social behavior plays a critical role between individuals, groups and social structure. It has been shown that light could influence the cognition functions in humans such as awareness and perception. However, the detail neural circuits for how external light influences our social behavior remains unclear. To test whether light could modulate social behavior, we combined different transgenic mouse lines and several behavior tests to investigate the neural circuits in the brain. Here we observed that one-hour light pulse could decrease sociosexual memory in mice. Genetically elimination of ipRGCs could block the light-dependent reduction of sociosexual memory. Moreover, application of oxytocin antagonist could also block the sociosexual memory, suggesting that oxytocin may involve in light-dependent modulation of sociosexual memory. In summary, it is likely that ipRGCs could transmit light information to modulate the release of oxytocin which influences sociosexual memory acquisition. These results provide novel direction to study how light influence the formation of sociosexual memory.
Contents
謝誌 i
中文摘要 iii
Abstract iv
Anatomical Abbreviations vi
Contents xv
Chapter I 1
Introduction 1
1.1 Connection between external light and social behavior 1
1.2 Social interaction, memory and recognition 2
1.3 Intrinsically photosensitive retinal ganglion cells (ipRGCs) 5
1.3.1 General description of ipRGCs 5
1.3.2 Subtypes of ipRGCs and its projection sites 6
1.4 Oxytocin in mammals 8
1.4.1 General description of oxytocin 8
1.4.2 Oxytocin release and neuron innervation in mouse brain 10
1.4.3 Daily concentration of oxytocin changes and light regulation 11
1.4.4 Oxytocin in social memory and social interaction 13
1.4.5 Investigation of oxytocin neuron whole brain innervation in mice 14
Statement of purpose 19
Chapter II 21
Materials and methods 21
2.1 Animals 21
2.2 Genotyping 21
2.2.1 DNA extraction 21
2.2.2 Polymerase chain reaction (PCR) 22
2.3 General two-trial social memory test and experimental design 22
2.5 Three-chamber test 25
2.6 Novel object recognition test 26
2.7 Oxytocin receptors antagonist infusion and behavior test 27
2.7.1 Stereotactic unilateral cannulation 27
2.7.2 Intracerebroventricular (i.c.v) injection and social memory test 28
2.8 Social encounter and immunohistochemistry staining 28
2.9 Brain and both eyes virus injection 30
2.9.1 General stereotactic virus injection procedures 30
2.10 Chemogenetic experiment 31
2.10.1 Pharmacological ipRGCs stimulation experiment 31
2.10.2 CNO administration and behavior test 31
2.11 Oxytocin ELISA 32
2.11.1 WT mice samples collection 32
2.11.2 Oxytocin ELISA 33
2.12 Data analysis 33
2.13 Oxytocin neuron whole brain innervation in mouse brain 34
2.13.1 Animals and care 34
2.13.2 Alkaline phosphatase staining 35
2.13.3 Analysis 36
Chapter III 37
Results 37
3.1 Light history impairs social memory in mice 37
3.2 Light effect at different level of familiarity between paired subjects 38
3.3 Light effect results from the social memory formation in first social encounter 39
3.4 Light history impairs social memory exists sexual dimorphic 41
3.5 M1 Brn3b positive ipRGCs were involved in light impairs social memory formation prominently 41
3.6 Oxytocin signaling involves in social memory formation 43
3.7 Light inhibits oxytocin neuron activation in SON after social encounter 44
3.8 Chemogenetic method for mimicking light pulse in melanopsin knockout mice 45
3.9 Oxytocin neuron manipulation in SON 45
3.10 Oxytocin neuron whole brain innervation in mouse 46
3.10.1 Labeling Oxytocin neurons with cre and reporter mouse 46
3.10.2 Oxytocin neurons in the hypothalamic area 47
3.10.3 Fibers of oxytocin neurons in the hypothalamus region 48
3.10.4 Interbrain pallidum and thalamic area 50
3.10.5 Striatum 50
3.10.6 Midbrain 51
3.10.7 Hindbrain and medulla 52
3.10.8 Cortex and olfactory areas 53
Chapter IV 55
Discussion 55
4.1 Light for motor activity and social behavior in mice 55
4.2 Melanopsin dependent social interaction ability was dramatically elevated 57
4.3 Circadian regulates memory and recognition 58
4.4 Light and oxytocin concentration in mice 59
4.5 Oxytocin neuron activity regulation after light stimulation 60
4.6 Different distributions of the presenting OXTR neuron input process might contribute to sexual dimorphism in short-term social memory and social interaction 62
4.7 Pheromones and light effect on social interaction 64
4.8 Oxytocin modulation in medial amygdala might involve in olfactory cue processing and influence social memory formation source from external light indirectly 66
4.9 Oxytocin neuron innervation in mouse 67
4.9.1 Comparison to previous reports 67
4.9.2 Innervation in hypothalamic area 70
4.9.3 Innervation in pallidum and limbic system 74
4.9.4 Innervation in basal ganglia 76
4.9.5 Innervation in cortical and olfactory areas 77
4.9.6 Innervation in thalamus 79
4.9.10 Innervation in midbrain 79
4.9.11 Innervation in hindbrain and medulla 80
Implications of this study 82
References 83
Figures 97
Figure 1: Transgenic mice were used in this study 97
Figure 2: Sociosexual behavior test paradigm 98
Figure 3: Day-light lamp stimulus influence the social memory in mice 99
Figure 4: Day-light lamp stimulus influence the social memory in mice 100
Figure 5: LED light stimulus influence the social memory in mice 101
Figure 6: LED light stimulus influence the social memory in mice 102
Figure 7: Circadian and light regulate social memory in mice 103
Figure 8: Light history didn’t affect social memory at male to male mice 104
Figure 9: Social memory have no influence in male to male after LED light stimulation 105
Figure 10: Light influences social memory formation after social affiliation but not memory consolidation 106
Figure 11: Light impairment survive under infrared light recording 107
Figure 12: Light didn’t affect mice short-term social memory by performing three-chamber test 109
Figure 13: Light didn’t affect mice non-social novel recognition 110
Figure 14: Melanopsin expressing ipRGCs are important for social memory formation 111
Figure 15: Melanopsin expressing ipRGCs are important for social memory formation 112
Figure 16: Partially M1 ipRGCs attend in light modulates social memory 113
Figure 17: Partially M1 ipRGCs attend in light modulates social memory 114
Figure 18: Partially non-M1 and Brn3b+ ipRGCs attend in light modulates social memory 115
Figure 19: Brn3b+ ipRGCs attend in light modulates social memory 116
Figure 20: Survive ipRGCs present normal social memory formation 117
Figure 21: Transgenic mice under opn4 locus present higher interaction versus female but not social memory ability difference 118
Figure 22: Intracerebroventricular cannulation 119
Figure 23: Oxytocin receptors antagonist administration before encounter impairs social memory formation 120
Figure 24: Light inhibits oxytocin neuron activation after social encounter in the SON 122
Figure 25: ipRGCs activity manipulation by DREADDs 124
Figure 26: Oxytocin neuron manipulation in the SON and behavior test 125
Figure 27: Retinal projection in the pSON 126
Figure 28: Oxytocin plasma concentration in different circadian timing 127
Figure 29: Diagram of neural circuits that light modulates social memory in mice through ipRGCs and OXT neuron 128
Figure 30: Mapping of AP expression under oxytocin promoter 132
Figure 31: Innervation and cell bodies location in the hypothalamus and piriform cortex 134
Figure 32: Sagittal view of oxytocin neuron in hypothalamus 136
Figure 33: Innervation and cell bodies location in the medial/ lateral hypothalamus 137
Figure 34: Innervation and cell bodies location in the preoptic area and pallidum 138
Figure 35: Innervation in amygdala and thalamus 139
Figure 36: Innervation in central and medial amygdala subregions of pallidum and arcuate nucleus in hypothalamus 140
Figure 37: Innervation in the preoptic area and pallidum 141
Figure 38: Innervation in midbrain area and hypothalamic 142
Figure 39: Innervation in periaqueductal nucleus and inferior colliculus 143
Figure 40: Innervation in midbrain and medulla 144
Figure 41: Innervation in diagonal band and septum area 146
Figure 42: Innervation in the nucleus accumbens 147
Figure 43: Innervation in prefrontal cortex and olfactory area 148
Tables 149
Table. 1 Oxytocin neuron cell body location and projection sites in mouse. 149
Table. 2 List of transgenic mouse primers. 151
Appendix 152
Abstracts and posters 152
Matlab code for videos analysis 159
Abbott, S. B. G. and C. B. Saper (2018). "Role of the median preoptic nucleus in the autonomic response to heat-exposure." Temperature 5(1): 4-6.

Alonso, G., et al. (1986). "Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions." Neurosci Lett 66(3): 251-256.

Althammer, F. and V. Grinevich (2017). "Diversity of oxytocin neurons: beyond magno- and parvocellular cell types?" J Neuroendocrinol.

Argiolas, A. and M. R. Melis (2013). "Neuropeptides and central control of sexual behaviour from the past to the present: a review." Prog Neurobiol 108: 80-107.

Artman, H. G., et al. (1982). "Characterization of the daily oxytocin rhythm in primate cerebrospinal fluid." J Neurosci 2(5): 598-603.

Augustine, V., et al. (2018). "Hierarchical neural architecture underlying thirst regulation." Nature 555: 204.

Axelson, J. F. and F. W. Leeuwen (1990). "Differential localization of estrogen receptors in various vasopressin synthesizing nuclei of the rat brain." J Neuroendocrinol 2(2): 209-216.

Berson, D. M. (2003). "Strange vision: ganglion cells as circadian photoreceptors." Trends Neurosci 26(6): 314-320.

Bicks, L. K., et al. (2015). "Prefrontal Cortex and Social Cognition in Mouse and Man." Frontiers in Psychology 6(1805).

Boulant, J. A. (2000). "Role of the preoptic-anterior hypothalamus in thermoregulation and fever." Clin Infect Dis 31 Suppl 5: S157-161.

Brennan, P. A. and F. Zufall (2006). "Pheromonal communication in vertebrates." Nature 444(7117): 308-315.

Brussaard, A. B., et al. (1997). "Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression." Neuron 19(5): 1103-1114.

Carson, D. S., et al. (2015). "Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children." Mol Psychiatry 20(9): 1085-1090.

Carter, C. S. (1992). "Oxytocin and sexual behavior." Neurosci Biobehav Rev 16(2): 131-144.

Castel, M. and J. F. Morris (1988). "The neurophysin-containing innervation of the forebrain of the mouse." Neuroscience 24(3): 937-966.

Chen, S. K., et al. (2011). "Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs." Nature 476(7358): 92-95.

Choe, H. K., et al. (2015). "Oxytocin Mediates Entrainment of Sensory Stimuli to Social Cues of Opposing Valence." Neuron 87(1): 152-163.

Crestani, C. C., et al. (2013). "Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review." Curr Neuropharmacol 11(2): 141-159.

Devarajan, K., et al. (2005). "Circadian and light regulation of oxytocin and parvalbumin protein levels in the ciliated ependymal layer of the third ventricle in the C57 mouse." Neuroscience 134(2): 539-547.

Devarajan, K. and B. Rusak (2004). "Oxytocin levels in the plasma and cerebrospinal fluid of male rats: effects of circadian phase, light and stress." Neurosci Lett 367(2): 144-147.

Dluzen, D. E., et al. (1998). "The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats." Peptides 19(6): 999-1005.

Dolen, G., et al. (2013). "Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin." Nature 501(7466): 179-184.

Dölen, G., et al. (2013). "Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin." Nature 501: 179.

Dölen, G. and R. C. Malenka (2014). "The Emerging Role of Nucleus Accumbens Oxytocin in Social Cognition." Biological Psychiatry 76(5): 354-355.

Dominguez, J. M. and E. M. Hull (2005). "Dopamine, the medial preoptic area, and male sexual behavior." Physiol Behav 86(3): 356-368.

Donaldson, Z. R. and L. J. Young (2008). "Oxytocin, vasopressin, and the neurogenetics of sociality." Science 322(5903): 900-904.

Dumais, K. M. and A. H. Veenema (2016). "Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior." Front Neuroendocrinol 40: 1-23.

Ecker, J. L., et al. (2010). "Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision." Neuron 67(1): 49-60.

Fang, L. Y., et al. (2008). "Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb." Neurosci Lett 438(2): 133-137.

Fang, Y. Y., et al. (2018). "A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors." Neuron 98(1): 192-207.e110.

Felix-Ortiz, A. C. and K. M. Tye (2014). "Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior." J Neurosci 34(2): 586-595.

Ferguson, J. N., et al. (2001). "Oxytocin in the medial amygdala is essential for social recognition in the mouse." J Neurosci 21(20): 8278-8285.

Ferguson, J. N., et al. (2000). "Social amnesia in mice lacking the oxytocin gene." Nat Genet 25(3): 284-288.

Fernandez, D. C., et al. (2018). "Light Affects Mood and Learning through Distinct Retina-Brain Pathways." Cell 175(1): 71-84.e18.

Ferri, S. L. and L. M. Flanagan-Cato (2012). "Oxytocin and dendrite remodeling in the hypothalamus." Horm Behav 61(3): 251-258.

File, S. E. and P. Seth (2003). "A review of 25 years of the social interaction test." Eur J Pharmacol 463(1-3): 35-53.

Freeman, S. M. and L. J. Young (2016). "Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications." J Neuroendocrinol 28(4).

Gimpl, G. and F. Fahrenholz (2001). "The Oxytocin Receptor System: Structure, Function, and Regulation." Physiological Reviews 81(2): 629-683.

Graham, D. M. and K. Y. Wong (2016). Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs). Webvision: The Organization of the Retina and Visual System. H. Kolb, E. Fernandez and R. Nelson. Salt Lake City (UT), University of Utah Health Sciences Center
Copyright: (c) 2018 Webvision.

Griffin, G. D. and L. M. Flanagan-Cato (2011). "Ovarian Hormone Action in the Hypothalamic Ventromedial Nucleus: Remodelling to Regulate Reproduction." Journal of Neuroendocrinology 23(6): 465-471.

Grinevich, V., et al. (2016). "Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain." Biol Psychiatry 79(3): 155-164.

Grinevich, V. and R. Stoop (2018). "Interplay between Oxytocin and Sensory Systems in the Orchestration of Socio-Emotional Behaviors." Neuron 99(5): 887-904.

Guler, A. D., et al. (2008). "Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision." Nature 453(7191): 102-105.

Gur, R., et al. (2014). "Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala." Biol Psychiatry 76(5): 377-386.

Hatori, M. and S. Panda (2010). "The emerging roles of melanopsin in behavioral adaptation to light." Trends Mol Med 16(10): 435-446.

Hattar, S., et al. (2006). "Central projections of melanopsin-expressing retinal ganglion cells in the mouse." J Comp Neurol 497(3): 326-349.

Hattar, S., et al. (2002). "Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity." Science 295(5557): 1065-1070.

Hitti, F. L. and S. A. Siegelbaum (2014). "The hippocampal CA2 region is essential for social memory." Nature 508(7494): 88-92.

Hung, L. W., et al. (2017). "Gating of social reward by oxytocin in the ventral tegmental area." Science 357(6358): 1406-1411.

Ishak, W. W., et al. (2011). "Oxytocin role in enhancing well-being: a literature review." J Affect Disord 130(1-2): 1-9.

Jenkins, J. S., et al. (1984). "Vasopressin, oxytocin and neurophysins in the human brain and spinal cord." Brain Res 291(1): 111-117.

Jhamandas, J. H., et al. (1989). "Diagonal band projection towards the hypothalamic supraoptic nucleus: light and electron microscopic observations in the rat." J Comp Neurol 282(1): 15-23.

Johns, J. M., et al. (2011). "Disruption of Maternal Parenting Circuitry by Addictive Process: Rewiring of Reward and Stress Systems." Frontiers in Psychiatry 2.

Kanwal, J. S. and P. D. Rao (2002). "Oxytocin within auditory nuclei: a neuromodulatory function in sensory processing?" Neuroreport 13(17): 2193-2197.

Kavushansky, A., et al. (2016). "Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats." Plos One 11(5).

Keenan, W. T., et al. (2017). "Eye-Drops for Activation of DREADDs." Front Neural Circuits 11: 93.

Kim, Y., et al. (2015). "Mapping social behavior-induced brain activation at cellular resolution in the mouse." Cell Rep 10(2): 292-305.

Knobloch, H. S., et al. (2012). "Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response." Neuron 73(3): 553-566.

Ko, J. (2017). "Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns." Frontiers in Neural Circuits 11.

Kogan, J. H., et al. (2000). "Long-term memory underlying hippocampus-dependent social recognition in mice." Hippocampus 10(1): 47-56.

Kohl, J., et al. (2018). "Functional circuit architecture underlying parental behaviour." Nature 556(7701): 326-331.

Kokare, D. M., et al. (2011). "A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice." J Pharmacol Toxicol Methods 64(3): 246-250.

Kovács, G. L., et al. (1979). "Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures." Brain Research 175(2): 303-314.

Kurvers, R. H. J. M. and F. Hölker (2015). "Bright nights and social interactions: a neglected issue." Behavioral Ecology 26(2): 334-339.

Lee, H. J., et al. (2009). "Oxytocin: the great facilitator of life." Prog Neurobiol 88(2): 127-151.

LeGates, T. A., et al. (2014). "Light as a central modulator of circadian rhythms, sleep and affect." Nat Rev Neurosci 15(7): 443-454.

Leng, G. and N. Sabatier (2017). "Oxytocin – The Sweet Hormone?" Trends in Endocrinology & Metabolism 28(5): 365-376.

Lin, Y. T., et al. (2018). "Conditional Deletion of Hippocampal CA2/CA3a Oxytocin Receptors Impairs the Persistence of Long-Term Social Recognition Memory in Mice." J Neurosci 38(5): 1218-1231.

Lister, R. G. and L. A. Hilakivi (1988). "The effects of novelty, isolation, light and ethanol on the social behavior of mice." Psychopharmacology (Berl) 96(2): 181-187.

Lobe, C. G., et al. (1999). "Z/AP, a double reporter for cre-mediated recombination." Dev Biol 208(2): 281-292.

Love, T. M. (2014). "Oxytocin, motivation and the role of dopamine." Pharmacol Biochem Behav 119: 49-60.

Lu, J., et al. (2000). "Effect of Lesions of the Ventrolateral Preoptic Nucleus on NREM and REM Sleep." The Journal of Neuroscience 20(10): 3830-3842.

Ludwig, M., et al. (2016). "Dendritic Release of Neurotransmitters." Compr Physiol 7(1): 235-252.

Ludwig, M. and G. Leng (2006). "Dendritic peptide release and peptide-dependent behaviours." Nat Rev Neurosci 7(2): 126-136.

Lueptow, L. M. (2017). "Novel Object Recognition Test for the Investigation of Learning and Memory in Mice." J Vis Exp(126).

Lukas, M., et al. (2011). "The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice." Neuropsychopharmacology 36(11): 2159-2168.

Lukas, M., et al. (2013). "Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics." Psychoneuroendocrinology 38(6): 916-926.

Macbeth, A. H., et al. (2009). "Housing conditions and stimulus females: a robust social discrimination task for studying male rodent social recognition." Nat Protoc 4(11): 1574-1581.

Macbeth, A. H., et al. (2009). "Oxytocin and the oxytocin receptor underlie intrastrain, but not interstrain, social recognition." Genes Brain Behav 8(5): 558-567.

Manning, M., et al. (2008). "Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents." Prog Brain Res 170: 473-512.

Manoli, D. S., et al. (2013). "Neural control of sexually dimorphic behaviors." Curr Opin Neurobiol 23(3): 330-338.

Marlin, B. J., et al. (2015). "Oxytocin enables maternal behaviour by balancing cortical inhibition." Nature 520(7548): 499-504.

McCarthy, M. M. and M. Altemus (1997). "Central nervous system actions of oxytocin and modulation of behavior in humans." Mol Med Today 3(6): 269-275.

McCullough, M. E., et al. (2013). "Problems with measuring peripheral oxytocin: can the data on oxytocin and human behavior be trusted?" Neurosci Biobehav Rev 37(8): 1485-1492.

Meira, T., et al. (2018). "A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics." Nat Commun 9(1): 4163.

Mens, W. B., et al. (1982). "Changes in cerebrospinal fluid levels of vasopressin and oxytocin of the rat during various light-dark regimes." Neurosci Lett 34(1): 51-56.

Merari, A. and A. Ginton (1975). "Characteristics of exaggerated sexual behavior induced by electrical stimulation of the medial preoptic area in male rats." Brain Res 86(1): 97-108.

Milosavljevic, N., et al. (2016). "Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice." Curr Biol 26(17): 2358-2363.

Mitre, M., et al. (2016). "A Distributed Network for Social Cognition Enriched for Oxytocin Receptors." J Neurosci 36(8): 2517-2535.

Mitre, M., et al. (2018). "Oxytocin Modulation of Neural Circuits." Curr Top Behav Neurosci 35: 31-53.

Montagrin, A., et al. (2018). "The social hippocampus." Hippocampus 28(9): 672-679.

Morin, L. P. (2013). "Neuroanatomy of the extended circadian rhythm system." Experimental neurology 243: 4-20.

Morin, L. P. and K. M. Studholme (2014). "Retinofugal projections in the mouse." J Comp Neurol 522(16): 3733-3753.

Murakami, G., et al. (2011). "Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice." Eur J Neurosci 34(3): 469-477.

Nagasawa, M., et al. (2012). "Oxytocin and mutual communication in mother-infant bonding." Front Hum Neurosci 6: 31.

Nakajima, M., et al. (2014). "Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons." Cell 159(2): 295-305.

Nasanbuyan, N., et al. (2018). "Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice." Endocrinology 159(2): 763-775.

Nasanbuyan, N., et al. (2018). "Oxytocin–Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice." Endocrinology 159(2): 763-775.

Nishimori, K., et al. (2008). "New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance." Prog Brain Res 170: 79-90.

Normandin, J. J. and A. Z. Murphy (2008). "Nucleus paragigantocellularis afferents in male and female rats: organization, gonadal steroid receptor expression, and activation during sexual behavior." J Comp Neurol 508(5): 771-794.

Noseda, R., et al. (2017). "Neural mechanism for hypothalamic-mediated autonomic responses to light during migraine." Proc Natl Acad Sci U S A 114(28): E5683-e5692.

Ocampo Daza, D., et al. (2012). "The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes." Gen Comp Endocrinol 175(1): 135-143.

Okuyama, T. (2018). "Social memory engram in the hippocampus." Neurosci Res 129: 17-23.

Okuyama, T., et al. (2016). "Ventral CA1 neurons store social memory." Science 353(6307): 1536-1541.

Pattison, P. M., et al. (2018). "LEDs for photons, physiology and food." Nature 563(7732): 493-500.

Peirson, S. N., et al. (2018). "Light and the laboratory mouse." Journal of Neuroscience Methods 300: 26-36.

Quattrochi, L. E., et al. (2018). "The M6 cell: A small-field bistratified photosensitive retinal ganglion cell." J Comp Neurol.

Raam, T., et al. (2017). "Hippocampal oxytocin receptors are necessary for discrimination of social stimuli." Nat Commun 8(1): 2001.

Raam, T., et al. (2017). "Hippocampal oxytocin receptors are necessary for discrimination of social stimuli." Nature Communications 8(1): 2001.

Reijmers, L. G., et al. (2001). "Social memory in the rat: circadian variation and effect of circadian rhythm disruption." Physiol Behav 72(3): 305-309.

Reppert, S. M., et al. (1984). "The circadian rhythm of oxytocin in primate cerebrospinal fluid: effects of destruction of the suprachiasmatic nuclei." Brain Res 307(1-2): 384-387.

Reppert, S. M., et al. (1983). "Comparison of the temporal profiles of vasopressin and oxytocin in the cerebrospinal fluid of the cat, monkey and rat." Brain Res 261(2): 341-345.

Rhodes, C. H., et al. (1981). "Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin." J Comp Neurol 198(1): 45-64.

Rogers-Carter, M. M., et al. (2018). "Insular cortex mediates approach and avoidance responses to social affective stimuli." Nat Neurosci 21(3): 404-414.

Romano, A., et al. (2015). "From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders." Front Neurosci 9: 497.

Ross, H. E. and L. J. Young (2009). "Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior." Front Neuroendocrinol 30(4): 534-547.

Roth, B. L. (2016). "DREADDs for Neuroscientists." Neuron 89(4): 683-694.

Samuelsen, C. L. and M. Meredith (2011). "Oxytocin antagonist disrupts male mouse medial amygdala response to chemical-communication signals." Neuroscience 180: 96-104.

Santoso, P., et al. (2018). "Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior." Am J Physiol Endocrinol Metab 315(4): E478-e488.

Saper, C. B., et al. (2005). "Hypothalamic regulation of sleep and circadian rhythms." Nature 437(7063): 1257-1263.

Sawchenko, P. E. and L. W. Swanson (1982). "Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat." Journal of Comparative Neurology 205(3): 260-272.

Scheele, D., et al. (2012). "Oxytocin modulates social distance between males and females." J Neurosci 32(46): 16074-16079.

Schmidt, T. M., et al. (2011). "Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions." Trends Neurosci 34(11): 572-580.

Seckl, J. R. and S. L. Lightman (1987). "Diurnal rhythm of vasopressin but not of oxytocin in the cerebrospinal fluid of the goat: lack of association with plasma cortisol rhythm." J Endocrinol 114(3): 477-482.

Snider, K. H., et al. (2018). "Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms." Neural Plast 2018: 7292540.

Sofroniew, M. V. (1980). "Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human." J Histochem Cytochem 28(5): 475-478.

Sofroniew, M. V. (1983). Morphology of Vasopressin and Oxytocin Neurones and Their Central and Vascular Projections. The Neurohypophysis: Structure, Function and Control, Proceedings of the 3rd International Conference on the Neurohypophysis: 101-114.

Sofroniew, M. V. (1983). "Vasopressin and oxytocin in the mammalian brain and spinal cord." Trends in Neurosciences 6: 467-472.

Spreng, R. N. (2013). "Examining the role of memory in social cognition." Front Psychol 4: 437.

Stoop, R. (2012). "Neuromodulation by oxytocin and vasopressin." Neuron 76(1): 142-159.

Theodosis, D. T., et al. (1986). "Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus." Neuroscience 19(1): 207-222.

Tirko, N. N., et al. (2018). "Oxytocin Transforms Firing Mode of CA2 Hippocampal Neurons." Neuron 100(3): 593-608.e593.

Wacker, D. W. and M. Ludwig (2012). "Vasopressin, oxytocin, and social odor recognition." Horm Behav 61(3): 259-265.

Wang, L., et al. (2015). "Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus." J Neurophysiol 113(3): 754-767.

Wang, Z. and B. J. Aragona (2004). "Neurochemical regulation of pair bonding in male prairie voles." Physiol Behav 83(2): 319-328.

Wei, Y.-C., et al. (2018). "Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender." Nature Communications 9(1).

Winslow, J. T. (2003). "Mouse social recognition and preference." Curr Protoc Neurosci Chapter 8: Unit 8.16.

Winslow, J. T. and T. R. Insel (2004). "Neuroendocrine basis of social recognition." Curr Opin Neurobiol 14(2): 248-253.

Wu, Z., et al. (2012). "An obligate role of oxytocin neurons in diet induced energy expenditure." Plos One 7(9): e45167.

Yao, S., et al. (2017). "Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues." Elife 6.

Yates, D. (2012). "Taking axonal delivery of oxytocin." Nature Reviews Neuroscience 13(4): 221-221.

Yu, S., et al. (2018). "The Hypothalamic Preoptic Area and Body Weight Control." Neuroendocrinology 106(2): 187-194.

Zhang, G. and D. Cai (2011). "Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment." Am J Physiol Endocrinol Metab 301(5): E1004-1012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top