|
Agata, K., 2003. Regeneration and gene regulation in planarians. Current Opinion in Genetics & Development 13, 492-496. Akimenko, M.-A., Marí-Beffa, M., Becerra, J., Géraudie, J., 2003. Old questions, new tools, and some answers to the mystery of fin regeneration. Developmental Dynamics 226, 190-201. Ambros, V., Horvitz, H.R., 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409. Bely, A.E., Sikes, J.M., 2010. Latent regeneration abilities persist following recent evolutionary loss in asexual annelids. Proceedings of the National Academy of Sciences 107, 1464. Bely, A.E., Wray, G.A., 2001. Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development 128, 2781. Bosch, T.C.G., 2007. Why polyps regenerate and we don''t: Towards a cellular and molecular framework for Hydra regeneration. Developmental Biology 303, 421-433. Chen, C.-F., Sung, T.-L., Chen, L.-Y., Chen, J.-H., 2018. Telomere maintenance during anterior regeneration and aging in the freshwater annelid Aeolosoma viride. Scientific Reports 8, 18078. Conboy, I.M., Conboy, M.J., Wagers, A.J., Girma, E.R., Weissman, I.L., Rando, T.A., 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760-764. Faas, L., Warrander, F.C., Maguire, R., Ramsbottom, S.A., Quinn, D., Genever, P., Isaacs, H.V., 2013. Lin28 proteins are required for germ layer specification in Xenopus. Development 140, 976. Falconi, R., Gugnali, A., Zaccanti, F., 2015. Quantitative observations on asexual reproduction of Aeolosoma viride (Annelida, Aphanoneura). Invertebrate Biology 134, 151-161. Falconi, R., Renzulli, T., Zaccanti, F., 2006. Survival and Reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia 564, 95-99. Galliot, B., Schmid, V., 2002. Cnidarians as a model system for under-standing evolution and regeneration. The International Journal of Developmental Biology 46, 39–48 Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., Jaenisch, R., 2009. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595. Heo, I., Joo, C., Kim, Y.-K., Ha, M., Yoon, M.-J., Cho, J., Yeom, K.-H., Han, J., Kim, V.N., 2009. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708. Huang, Y., 2012. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdisciplinary Reviews: RNA 3, 483-494. Itou, J., Kawakami, H., Burgoyne, T., Kawakami, Y., 2012. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biology Open 1, 739. Jopling, C., Sleep, E., Raya, M., Martí, M., Raya, A., Belmonte, J.C.I., 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606. Jun-Hao, E.T., Gupta, R.R., Shyh-Chang, N., 2016. Lin28 and let-7 in the metabolic physiology of aging. Trends in Endocrinology & Metabolism 27, 132-141. Kikuchi, K., Gupta, V., Wang, J., Holdway, J.E., Wills, A.A., Fang, Y., Poss, K.D., 2011. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895. Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H.H., Tanaka, E.M., 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60. Lenhoff, S.G., Lenhoff, H.M., 1986. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley’s Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped like Horns (Pacific Grove,California: Boxwood Press). López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., 2013. The hallmarks of aging. Cell 153, 1194-1217. Melton, C., Judson, R.L., Blelloch, R., 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621. Montgomery, J.R., Coward, S.J., 1974. On the minimal size of a planarian capable of regeneration. Transactions of the American Microscopical Society 93, 386-391. Morgan, T.H., 1898. Experimental studies of the regeneration of planaria maculata. Roux''s archives of developmental biology 7, 364-397. Moss, E.G., Lee, R.C., Ambros, V., 1997. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646. Moss, E.G., Tang, L., 2003. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Developmental Biology 258, 432-442. Newman, M.A., Thomson, J.M., Hammond, S.M., 2008. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549. Nishimura, T., Kaneko, S., Kawana-Tachikawa, A., Tajima, Y., Goto, H., Zhu, D., Nakayama-Hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., Takayama, N., Yamada, D., Nishimura, K., Ohtaka, M., Watanabe, N., Takahashi, S., Iwamoto, A., Koseki, H., Nakanishi, M., Eto, K., Nakauchi, H., 2013. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12, 114-126. Ouchi, Y., Yamamoto, J., Iwamoto, T., 2014. The heterochronic genes lin-28a and lin-28b play an essential and evolutionarily conserved role in early zebrafish development. PLoS One 9, e88086. Özpolat, B.D., Bely, A.E., 2016. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Current Opinion in Genetics & Development 40, 144-153. Piskounova, E., Viswanathan, S.R., Janas, M., LaPierre, R.J., Daley, G.Q., Sliz, P., Gregory, R.I., 2008. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. Journal of Biological Chemistry 283, 21310-21314. Qiu, C., Ma, Y., Wang, J., Peng, S., Huang, Y., 2009. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Research 38, 1240-1248. Ramachandran, R., Fausett, B.V., Goldman, D., 2010. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature cell biology 12, 1101-1107. Randolph, H., 1897. Observations and experiments on regeneration in planarians. Archiv für Entwicklungsmechanik der Organismen 5, 352–372 Roos, M., Pradère, U., Ngondo, R.P., Behera, A., Allegrini, S., Civenni, G., Zagalak, J.A., Marchand, J.-R., Menzi, M., Towbin, H., Scheuermann, J., Neri, D., Caflisch, A., Catapano, C.V., Ciaudo, C., Hall, J., 2016. A small-molecule inhibitor of Lin28. ACS Chemical Biology 11, 2773-2781. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., Wulczyn, F.G., 2008. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology 10, 987. Sánchez Alvarado, A., 2006. Planarian regeneration: its end is its beginning. Cell 124, 241-245. Seifert, A.W., Voss, S.R., 2013. Revisiting the relationship between regenerative ability and aging. BMC Biology 11, 2. Shyh-Chang, N., Zhu, H., Yvanka de Soysa, T., Shinoda, G., Seligson, M.T., Tsanov, K.M., Nguyen, L., Asara, J.M., Cantley, L.C., Daley, G.Q., 2013. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792. Tanaka, E.M., Reddien, P.W., 2011. The cellular basis for animal regeneration. Developmental Cell 21, 172-185. Tsialikas, J., Romer-Seibert, J., 2015. LIN28: roles and regulation in development and beyond. Development 142, 2397. Vadla, B., Kemper, K., Alaimo, J., Heine, C., Moss, E.G., 2012. Lin-28 controls the succession of cell fate choices via two distinct activities. PLOS Genetics 8, e1002588. Viswanathan, S.R., Daley, G.Q., Gregory, R.I., 2008. Selective blockade of microRNA processing by Lin28. Science 320, 97. Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S.-i., Koseki, H., Kawamoto, H., 2013. Regeneration of human tumor antigen-specific T Cells from iPSCs derived from mature CD8+ T Cells. Cell Stem Cell 12, 31-36. Wang, D., Hou, L., Nakamura, S., Su, M., Li, F., Chen, W., Yan, Y., Green, C.D., Chen, D., Zhang, H., Antebi, A., Han, J.-D.J., 2017. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 16, 113-124. Wang, X.-W., Li, Q., Liu, C.-M., Hall, P.A., Jiang, J.-J., Katchis, C.D., Kang, S., Dong, B.C., Li, S., Zhou, F.-Q., 2018. Lin28 signaling supports mammalian PNS and CNS axon regeneration. Cell Reports 24, 2540-2552.e2546. Wendler, S., Hartmann, N., Hoppe, B., Englert, C., 2015. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 14, 857-866. Wenemoser, D., Reddien, P.W., 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology 344, 979-991. Wong, C., Jones, D.L., 2012. Efficiency of spermatogonial dedifferentiation during aging. PLoS One 7, e33635-e33635. Yang, D.-H., Moss, E.G., 2003. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expression Patterns 3, 719-726. Yao, K., Qiu, S., Tian, L., Snider, W.D., Flannery, J.G., Schaffer, D.V., Chen, B., 2016. Wnt regulates proliferation and neurogenic potential of müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Reports 17, 165-178. Yermalovich, A.V., Osborne, J.K., Sousa, P., Han, A., Kinney, M.A., Chen, M.J., Robinton, D.A., Montie, H., Pearson, D.S., Wilson, S.B., Combes, A.N., Little, M.H., Daley, G.Q., 2019. Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications 10, 168. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., Thomson, J.A., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917. Yun, M.H., 2015. Changes in regenerative capacity through lifespan. International Journal of Molecular Sciences 16, 25392-25432. Zheng, P., Shao, Q., Diao, X., Li, Z., Han, Q., 2016. Expression of stem cell pluripotency factors during regeneration in the earthworm Eisenia foetida. Gene 575, 58-65.
|