|
1.Baumhauer, J.F., et al., A Prospective-Study of Ankle Injury Risk-Factors. American Journal of Sports Medicine, 1995. 23(5): p. 564-570. 2.Garrick, J.G. and R.K. Requa, The Epidemiology of Foot and Ankle Injuries in Sports. Clinics in Sports Medicine, 1988. 7(1): p. 29-36. 3.G Garrick, J., The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. Vol. 5. 1977. 241-2. 4.G. Garrick, J. and R. K. Requa, Role of external support in the prevention of ankle sprains. Vol. 5. 1973. 200-3. 5.Yeung, M.S., et al., An epidemiological survey on ankle sprain. British journal of sports medicine, 1994. 28(2): p. 112-116. 6.Fong, D.T.P., et al., A systematic review on ankle injury and ankle sprain in sports. Sports Medicine, 2007. 37(1): p. 73-94. 7.Cornwall, M. and T. McPoil, Reliability and Validity of Center-of-Pressure Quantification. Vol. 93. 2003. 142-9. 8.Your Foot as a Twisted Plate: Supination and Pronation. 2014. 9.Riegger, C.L., Anatomy of the Ankle and Foot. Physical Therapy, 1988. 68(12): p. 1802-1814. 10.Siegler, S., J. Chen, and C. D Schneck, The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics. Vol. 110. 1988. 364-73. 11.Holden, J.P., E.S. Grood, and J.F. Cummings, Factors Affecting Sensitivity, of a Transducer for Measuring Anterior Cruciate Ligament Force. Journal of Biomechanics, 1995. 28(1): p. 99-102. 12.Hall, G.W., et al., Rate-independent characteristics of an arthroscopically implantable force probe in the human Achilles tendon. Journal of Biomechanics, 1999. 32(2): p. 203-207. 13.Herzog, W., et al., Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of Biomechanics, 1996. 29(1): p. 103-109. 14.Fleming, B.C., G.D. Peura, and B.D. Beynnon, Factors influencing the output of an implantable force transducer. Journal of Biomechanics, 2000. 33(7): p. 889-893. 15.Ravary, B., et al., Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical Biomechanics, 2004. 19(5): p. 433-447. 16.Siegler, S., et al., A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. Journal of Biomechanics, 1996. 29(7): p. 943-947. 17.de Asla, R.J., et al., Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual‐orthogonal fluoroscopic and magnetic resonance imaging technique. Journal of Orthopaedic Research, 2006. 24(5): p. 1019-1027. 18.Marcus Hollis, J., R. Dale Blasier, and C.M. Flahiff, Simulated lateral ankle ligamentous injury: change in ankle stability. The American journal of sports medicine, 1995. 23(6): p. 672-677. 19.Aydogan, U., R.R. Glisson, and J.A. Nunley, Extensor retinaculum augmentation reinforces anterior talofibular ligament repair. Clinical Orthopaedics and Related Research, 2006(442): p. 210-215. 20.Lewis, J.L., W.D. Lew, and J. Schmidt, A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement. Journal of Biomechanical Engineering-Transactions of the Asme, 1982. 104(2): p. 125-128. 21.Bahr, R., et al., Mechanics of the anterior drawer and talar tilt tests - A cadaveric study of lateral ligament injuries of the ankle. Acta Orthopaedica Scandinavica, 1997. 68(5): p. 435-441. 22.Colville, M.R., et al., Strain-Measurement in Lateral Ankle Ligaments. American Journal of Sports Medicine, 1990. 18(2): p. 196-200. 23.Ozeki, S., et al., Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot & Ankle International, 2002. 23(9): p. 825-832. 24.Tohyama, H., et al., Biomechanical Analysis of the Ankle Anterior Drawer Test for Anterior Talofibular Ligament Injuries. Journal of Orthopaedic Research, 1995. 13(4): p. 609-614. 25.Fujie, H., et al., The Use of Robotics Technology to Study Human Joint Kinematics - a New Methodology. Journal of Biomechanical Engineering-Transactions of the Asme, 1993. 115(3): p. 211-217. 26.Rudy, T.W., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics, 1996. 29(10): p. 1357-1360. 27.Prisk, V.R., et al., Lateral Ligament Repair and Reconstruction Restore Neither Contact Mechanics of the Ankle Joint nor Motion Patterns of the Hindfoot. Journal of Bone and Joint Surgery-American Volume, 2010. 92a(14): p. 2375-2386. 28.Syu, C-C., Development of a Robot-Based Testing System for the Study of Joint Biomechanics. Institute of Biomedical Engineering National Taiwan University., 2005. 29.Hsieh, H.J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomedical Engineering Online, 2016. 15. 30.Rusinkiewicz, S. and M. Levoy. Efficient variants of the ICP algorithm. in Proceedings Third International Conference on 3-D Digital Imaging and Modeling. 2001. 31.Peters, W.H. and W.F. Ranson, Digital Imaging Techniques in Experimental Stress-Analysis. Optical Engineering, 1982. 21(3): p. 427-431. 32.Peters, W.H., et al., Application of digital image correlation methods to rigid body mechanics, Opt Eng. Vol. 22. 1983. 738-742. 33.Chu, T.C., et al., Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Experimental Mechanics, 1985. 25(3): p. 232-244. 34.Sutton, M.A., et al., Application of an Optimized Digital Correlation Method to Planar Deformation Analysis. Image and Vision Computing, 1986. 4(3): p. 143-150. 35.Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 2009. 20(6). 36.Boyce, B.L., et al., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008. 29(28): p. 3896-3904. 37.Gao, Z. and J.P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Medical Image Analysis, 2010. 14(2): p. 126-137. 38.Sztefek, P., et al., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. Journal of Biomechanics, 2010. 43(4): p. 599-605. 39.Jian, L-D., Biomechanics of Articular Surface in Ankle Joint with Subtalar Arthrodesis Using Digital Image Correlation and Robot System. Institute of Biomedical Engineering National Taiwan University., 2013. 40.Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part 1: ankle, hip, and spine. Journal of Biomechanics, 2002. 35(4): p. 543-548. 41.Watanabe, K., et al., Analysis of joint laxity after total ankle arthroplasty: Cadaver study. Clinical Biomechanics, 2009. 24(8): p. 655-660. 42.Ching, R.P., et al., Comparison of Residual Stability in Thoracolumbar Spine Fractures Using Neutral Zone Measurements. Journal of Orthopaedic Research, 1995. 13(4): p. 533-541. 43.Wang, H.S., et al., An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability. Journal of Biomechanics, 2015. 48(12): p. 2934-2940.
|