跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡帛霖
研究生(外文):Po-Lin Tsai
論文名稱:利用機械手臂與順序韌帶切除法量測距下關節骨融合術前術後踝關節勁度與韌帶及關節面受力
論文名稱(外文):Measurement of Ankle Joint Stiffness and Loadings in the Ligaments and Articular Surfaces Using Robot-Based Joint Testing System with Sequential Ligament Resection Before and After Subtalar Arthrodesis
指導教授:呂東武呂東武引用關係
指導教授(外文):Tung-Wu Lu
口試委員:陳文斌陳祥和林正忠
口試委員(外文):Weng-Pin ChenHsiang-Ho ChenCheng-Chung Lin
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:踝關節機械手臂關節測試系統數位影像相關法踝關節外側韌帶骨融合術
DOI:10.6342/NTU201902246
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
踝關節是人體之中最重要的樞紐及承重關節,也容易受傷,在運動傷害中造成的踝關節傷害佔25%,嚴重的踝關節傷害可能會導至踝關節功能上的限制和失能。在眾多踝關節傷害中,踝關節扭傷佔有 80%以上的比例,大約 77%的踝關節扭傷是屬於外側扭傷,如果踝關節扭傷治療不當,73%的扭傷運動員踝關節扭傷反復發作。踝關節扭傷時會產生疼痛症狀和踝關節活動的限制之外,嚴重可能會造成骨折或脛骨肌肉群損傷,導致踝關節與各軟組織之間的不平衡,間接影響破壞踝關節的穩定性,若踝關節長期處於不穩定的狀態之下,可能導致退化性關節炎或創傷性的發生,然而,踝關節相比其他下肢之負重關節,膝關節以及髖關節踝關節,雖然承受更大的壓應力,但踝關節關節炎的盛行率卻遠低於膝關節以及髖關節,因此研究踝關節的生物力學,是一個重要的議題。
本研究結合了三維全域變形及應變量測系統與機械手臂關節測試系統,由此探討距下關節骨融合術前術後對踝關節之影響。本研究包含前後拉伸試驗與內外翻模擬試驗,進行軟骨面重建,藉由模型對位可獲完整軟骨和骨頭模型,與量測出骨頭運動學資訊,推算出踝關節軟骨形變及韌帶之應變。本研究發現,距下骨融合術將會造成踝關節活動度下降,針對前後拉測試結果,造成勁度在各角度都明顯提升,而內外翻在各角度則造成勁度下降,同時前距腓韌帶和跟腓韌帶提供給踝關節在前後拉內外翻的穩定性,說明踝關節之力量分配的重要性,本研究所得術前術後之關節位移、力量計算出勁度,韌帶應變之變化和關節面軟骨的形變與各韌帶在其個角度的貢獻結果,未來將可以用來驗證,其他踝關節外側韌帶之電腦模擬結果,並成為外科踝關節手術和術後復健之依據。
The ankle joint is the most important hub and load-bearing joint in the human body. It is also prone to injury. The ankle injury caused by sports injuries accounts for 25%. A severe ankle injury may lead to ankle joint function limitation and disability. Among the many ankle injuries, the ankle sprain accounts for more than 80% of the ankle sprain. About 77% of the ankle sprains belong to the lateral sprain. If the ankle sprain is not treated properly, 73% of the sprained athletes have an ankle sprain. In addition to the pain symptoms and ankle movement restrictions in the ankle sprain, it may cause damage to the fracture or the tibial muscle group, resulting in an imbalance between the ankle joint and each soft tissue, indirectly affecting the stability of the ankle joint. Long-term instability of the ankle joint may lead to degenerative arthritis or traumatic development. However, the ankle joint has greater compressive stress than the other lower limbs, the knee joint, and the hip joint. However, the prevalence of ankle arthritis is much lower than that of the knee joint and the hip joint. Therefore, studying the biomechanics of the ankle joint is an important issue.
This study combines a three-dimensional global deformation and strain measurement system with a mechanical arm joint test system to explore the effects of pre- and post-operative articular fusion on the ankle joint. This study included pre- and post-tension test and internal-external simulation test for cartilage surface reconstruction. The model can be used to obtain intact cartilage and bone models, and the bone kinematics information can be measured to calculate the deformation of the ankle cartilage and the strain of the ligament. This study found that subtalar fusion will cause the ankle joint to decrease inactivity. The results of the anterior-posterior pull test result in a significant increase in stiffness at all angles, while the internal and external vertices cause stiffness reduction at various angles, while the Anterior talofibular ligament and the Calcaneofibular ligament provide the stability of the ankle joint in the anterior and posterior valgus, indicating the importance of the force distribution of the ankle joint. The joint displacement, the strength of the force calculated before and after the study, the change of the ligament strain and The deformation of the articular cartilage and the contribution of each ligament at its angle will be used in the future to verify the computer simulation results of other lateral ankle ligaments and become the basis for surgical ankle surgery and postoperative rehabilitation.
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XVII
第一章 緒論 1
第一節 研究動機 1
第二節 踝關節之功能解剖構造 2
一、 骨骼系統 2
二、 韌帶系統 4
三、 肌肉組織 5
四、 距下關節骨融合術 6
第三節 文獻回顧 8
一、 活體研究 8
二、 體外研究 10
三、 機械手臂關節測試系統 12
第四節 研究目的 13
第二章 材料與方法 14
第一節 踝關節試體 14
第二節 硬體 15
一、 機械手臂系統 15
二、 六軸力規 16
三、 夾具設備 17
四、 三維全域變形及應變量測系統 18
第三節 軟體 19
一、 Visual Basic 6.0 19
二、 三維全域變形及應變量測系統 20
三、 Geomagic Studio 13 20
第四節 數位影像相關法 21
第五節 控制理論與實驗流程 23
一、 座標系統定義 23
二、 機器人學理論應用:機械手臂控制 25
三、 實驗流程 26
第六節 分析方法 28
第三章 實驗分析結果 30
第一節 前後拉測試與距骨傾斜測試 30
第二節 距下關節骨融合術對距骨軟骨接觸力學之影響 60
第四章 討論 69
第一節 機械手臂關節側試系統於踝關節之收斂 69
第二節 距下關節骨融合術前術後於拉伸、距骨傾斜測試 69
第三節 外側韌帶之貢獻 70
第四節 骨融合術與外側韌帶和軟骨接觸面積 71
第五章 結論 72
參考文獻 73
1.Baumhauer, J.F., et al., A Prospective-Study of Ankle Injury Risk-Factors. American Journal of Sports Medicine, 1995. 23(5): p. 564-570.
2.Garrick, J.G. and R.K. Requa, The Epidemiology of Foot and Ankle Injuries in Sports. Clinics in Sports Medicine, 1988. 7(1): p. 29-36.
3.G Garrick, J., The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. Vol. 5. 1977. 241-2.
4.G. Garrick, J. and R. K. Requa, Role of external support in the prevention of ankle sprains. Vol. 5. 1973. 200-3.
5.Yeung, M.S., et al., An epidemiological survey on ankle sprain. British journal of sports medicine, 1994. 28(2): p. 112-116.
6.Fong, D.T.P., et al., A systematic review on ankle injury and ankle sprain in sports. Sports Medicine, 2007. 37(1): p. 73-94.
7.Cornwall, M. and T. McPoil, Reliability and Validity of Center-of-Pressure Quantification. Vol. 93. 2003. 142-9.
8.Your Foot as a Twisted Plate: Supination and Pronation. 2014.
9.Riegger, C.L., Anatomy of the Ankle and Foot. Physical Therapy, 1988. 68(12): p. 1802-1814.
10.Siegler, S., J. Chen, and C. D Schneck, The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics. Vol. 110. 1988. 364-73.
11.Holden, J.P., E.S. Grood, and J.F. Cummings, Factors Affecting Sensitivity, of a Transducer for Measuring Anterior Cruciate Ligament Force. Journal of Biomechanics, 1995. 28(1): p. 99-102.
12.Hall, G.W., et al., Rate-independent characteristics of an arthroscopically implantable force probe in the human Achilles tendon. Journal of Biomechanics, 1999. 32(2): p. 203-207.
13.Herzog, W., et al., Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of Biomechanics, 1996. 29(1): p. 103-109.
14.Fleming, B.C., G.D. Peura, and B.D. Beynnon, Factors influencing the output of an implantable force transducer. Journal of Biomechanics, 2000. 33(7): p. 889-893.
15.Ravary, B., et al., Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical Biomechanics, 2004. 19(5): p. 433-447.
16.Siegler, S., et al., A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. Journal of Biomechanics, 1996. 29(7): p. 943-947.
17.de Asla, R.J., et al., Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual‐orthogonal fluoroscopic and magnetic resonance imaging technique. Journal of Orthopaedic Research, 2006. 24(5): p. 1019-1027.
18.Marcus Hollis, J., R. Dale Blasier, and C.M. Flahiff, Simulated lateral ankle ligamentous injury: change in ankle stability. The American journal of sports medicine, 1995. 23(6): p. 672-677.
19.Aydogan, U., R.R. Glisson, and J.A. Nunley, Extensor retinaculum augmentation reinforces anterior talofibular ligament repair. Clinical Orthopaedics and Related Research, 2006(442): p. 210-215.
20.Lewis, J.L., W.D. Lew, and J. Schmidt, A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement. Journal of Biomechanical Engineering-Transactions of the Asme, 1982. 104(2): p. 125-128.
21.Bahr, R., et al., Mechanics of the anterior drawer and talar tilt tests - A cadaveric study of lateral ligament injuries of the ankle. Acta Orthopaedica Scandinavica, 1997. 68(5): p. 435-441.
22.Colville, M.R., et al., Strain-Measurement in Lateral Ankle Ligaments. American Journal of Sports Medicine, 1990. 18(2): p. 196-200.
23.Ozeki, S., et al., Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot & Ankle International, 2002. 23(9): p. 825-832.
24.Tohyama, H., et al., Biomechanical Analysis of the Ankle Anterior Drawer Test for Anterior Talofibular Ligament Injuries. Journal of Orthopaedic Research, 1995. 13(4): p. 609-614.
25.Fujie, H., et al., The Use of Robotics Technology to Study Human Joint Kinematics - a New Methodology. Journal of Biomechanical Engineering-Transactions of the Asme, 1993. 115(3): p. 211-217.
26.Rudy, T.W., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics, 1996. 29(10): p. 1357-1360.
27.Prisk, V.R., et al., Lateral Ligament Repair and Reconstruction Restore Neither Contact Mechanics of the Ankle Joint nor Motion Patterns of the Hindfoot. Journal of Bone and Joint Surgery-American Volume, 2010. 92a(14): p. 2375-2386.
28.Syu, C-C., Development of a Robot-Based Testing System for the Study of Joint Biomechanics. Institute of Biomedical Engineering National Taiwan University., 2005.
29.Hsieh, H.J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomedical Engineering Online, 2016. 15.
30.Rusinkiewicz, S. and M. Levoy. Efficient variants of the ICP algorithm. in Proceedings Third International Conference on 3-D Digital Imaging and Modeling. 2001.
31.Peters, W.H. and W.F. Ranson, Digital Imaging Techniques in Experimental Stress-Analysis. Optical Engineering, 1982. 21(3): p. 427-431.
32.Peters, W.H., et al., Application of digital image correlation methods to rigid body mechanics, Opt Eng. Vol. 22. 1983. 738-742.
33.Chu, T.C., et al., Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Experimental Mechanics, 1985. 25(3): p. 232-244.
34.Sutton, M.A., et al., Application of an Optimized Digital Correlation Method to Planar Deformation Analysis. Image and Vision Computing, 1986. 4(3): p. 143-150.
35.Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 2009. 20(6).
36.Boyce, B.L., et al., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008. 29(28): p. 3896-3904.
37.Gao, Z. and J.P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Medical Image Analysis, 2010. 14(2): p. 126-137.
38.Sztefek, P., et al., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. Journal of Biomechanics, 2010. 43(4): p. 599-605.
39.Jian, L-D., Biomechanics of Articular Surface in Ankle Joint with Subtalar Arthrodesis Using Digital Image Correlation and Robot System. Institute of Biomedical Engineering National Taiwan University., 2013.
40.Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part 1: ankle, hip, and spine. Journal of Biomechanics, 2002. 35(4): p. 543-548.
41.Watanabe, K., et al., Analysis of joint laxity after total ankle arthroplasty: Cadaver study. Clinical Biomechanics, 2009. 24(8): p. 655-660.
42.Ching, R.P., et al., Comparison of Residual Stability in Thoracolumbar Spine Fractures Using Neutral Zone Measurements. Journal of Orthopaedic Research, 1995. 13(4): p. 533-541.
43.Wang, H.S., et al., An MRI-compatible loading device to assess knee joint cartilage deformation: Effect of preloading and inter-test repeatability. Journal of Biomechanics, 2015. 48(12): p. 2934-2940.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊