|
1.Tomanov, K., et al., Sumoylation and phosphorylation: hidden and overt links. J Exp Bot, 2018. 69(19): p. 4583-4590. 2.Lamoliatte, F., et al., Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun, 2017. 8: p. 14109. 3.Biggar, K.K. and S.S. Li, Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol, 2015. 16(1): p. 5-17. 4.Han, Z.J., et al., The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol, 2018. 52(4): p. 1081-1094. 5.Cremona, C.A., P. Sarangi, and X. Zhao, Sumoylation and the DNA damage response. Biomolecules, 2012. 2(3): p. 376-88. 6.Sternsdorf, T., K. Jensen, and H. Will, Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol, 1997. 139(7): p. 1621-34. 7.Wilkinson, K.A. and J.M. Henley, Mechanisms, regulation and consequences of protein SUMOylation. Biochem J, 2010. 428(2): p. 133-45. 8.Olsen, S.K., et al., Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature, 2010. 463(7283): p. 906-12. 9.Rodriguez, M.S., C. Dargemont, and R.T. Hay, SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem, 2001. 276(16): p. 12654-9. 10.Melchior, F., M. Schergaut, and A. Pichler, SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci, 2003. 28(11): p. 612-8. 11.Minty, A., et al., Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem, 2000. 275(46): p. 36316-23. 12.Hecker, C.M., et al., Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem, 2006. 281(23): p. 16117-27. 13.Song, J., et al., Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem, 2005. 280(48): p. 40122-9. 14.Lin, D.Y., et al., Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell, 2006. 24(3): p. 341-54. 15.Yang, X., et al., Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997. 89(7): p. 1067-76. 16.Perlman, R., et al., TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol, 2001. 3(8): p. 708-14. 17.Chen, L.Y. and J.D. Chen, Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol, 2003. 23(20): p. 7108-21. 18.Lin, D.Y., et al., Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol, 2004. 24(24): p. 10529-41. 19.Chang, C.C., et al., Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem, 2005. 280(11): p. 10164-73. 20.Kuo, H.Y., et al., SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A, 2005. 102(47): p. 16973-8. 21.Kim, E.J., J.S. Park, and S.J. Um, Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res, 2003. 31(18): p. 5356-67. 22.Li, H., et al., Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol, 2000. 20(5): p. 1784-96. 23.Tang, J., et al., A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem, 2004. 279(19): p. 20369-77. 24.Ishov, A.M., O.V. Vladimirova, and G.G. Maul, Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci, 2004. 117(Pt 17): p. 3807-20. 25.Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. EMBO J, 2000. 19(8): p. 1745-54. 26.Blobe, G.C., W.P. Schiemann, and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8. 27.Massague, J., How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000. 1(3): p. 169-78. 28.Hahn, S.A., et al., DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996. 271(5247): p. 350-3. 29.Heldin, C.H., K. Miyazono, and P. ten Dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997. 390(6659): p. 465-71. 30.Zawel, L., et al., Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell, 1998. 1(4): p. 611-7. 31.Chacko, B.M., et al., Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell, 2004. 15(5): p. 813-23. 32.Qin, B., S.S. Lam, and K. Lin, Crystal structure of a transcriptionally active Smad4 fragment. Structure, 1999. 7(12): p. 1493-503. 33.Roelen, B.A., et al., Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-beta-induced nuclear accumulation. Am J Physiol Cell Physiol, 2003. 285(4): p. C823-30. 34.Moren, A., et al., Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem, 2003. 278(35): p. 33571-82. 35.Lee, P.S., et al., Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J Biol Chem, 2003. 278(30): p. 27853-63. 36.Liang, M., et al., Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J Biol Chem, 2004. 279(22): p. 22857-65. 37.Melnick, A. and J.D. Licht, Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 1999. 93(10): p. 3167-215. 38.Jensen, K., C. Shiels, and P.S. Freemont, PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001. 20(49): p. 7223-33. 39.Li, C., et al., C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation. J Cell Sci, 2017. 130(20): p. 3496-3506. 40.Kamitani, T., et al., Identification of three major sentrinization sites in PML. J Biol Chem, 1998. 273(41): p. 26675-82. 41.Percherancier, Y., et al., Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem, 2009. 284(24): p. 16595-608. 42.Sahin, U., et al., Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol, 2014. 204(6): p. 931-45. 43.Ascoli, C.A. and G.G. Maul, Identification of a novel nuclear domain. J Cell Biol, 1991. 112(5): p. 785-95. 44.Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52. 45.Lallemand-Breitenbach, V., et al., Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med, 2001. 193(12): p. 1361-71. 46.Lin, D.Y., et al., Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J Biol Chem, 2003. 278(18): p. 15958-65. 47.Borden, K.L., Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol, 2002. 22(15): p. 5259-69. 48.Yeung, P.L., et al., Daxx contains two nuclear localization signals and interacts with importin alpha3. J Cell Biochem, 2008. 103(2): p. 456-70. 49.Lange, A., et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem, 2007. 282(8): p. 5101-5. 50.Escobar-Cabrera, E., et al., Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. J Biol Chem, 2011. 286(22): p. 19816-29. 51.Zhu, J., et al., A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell, 2005. 7(2): p. 143-53. 52.Ecsedy, J.A., J.S. Michaelson, and P. Leder, Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity. Mol Cell Biol, 2003. 23(3): p. 950-60. 53.Tang, J., et al., Daxx is reciprocally regulated by Mdm2 and Hausp. Biochem Biophys Res Commun, 2010. 393(3): p. 542-5. 54.Muromoto, R., et al., Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation. J Immunol, 2006. 177(2): p. 1160-70. 55.Chang, C.C., et al., Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell, 2011. 42(1): p. 62-74.
|