(3.237.97.64) 您好!臺灣時間:2021/03/09 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥伃
研究生(外文):Yen-Yu Chen
論文名稱:探討Daxx辨識類泛素化修飾蛋白之模組
論文名稱(外文):Identification of Daxx Motif in Recognizing Sumoylated Proteins
指導教授:施修明
指導教授(外文):Hsiu Ming, Shih
口試委員:李芳仁王彥士
口試委員(外文):Fang Jen, LeeYane Shih, Wang
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:59
中文關鍵詞:後轉譯修飾類泛素化修飾Smad4Daxx蛋白交互作用
DOI:10.6342/NTU201901601
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類泛素化是很重要的後轉譯修飾,並調節各樣的生物途徑。Daxx蛋白在過去的文獻發現它可以辨認經類泛素化修飾後蛋白並且去抑制基因轉錄活性以及其在細胞中的分佈。Daxx蛋白透過其SUMO interacting motif (SIM)去辨認類泛素化修飾後的蛋白,但這樣不足以提供Daxx專一性的辨認。因此,在此論文中我們要探討除了SIM之外,是否存在其他區域或模組使Daxx可以專一性的辨認其交互作用的蛋白。已知Daxx蛋白傾向與Lys159類泛素化Smad4蛋白有交互作用並且抑制由Smad4轉錄因子調控的基因轉錄,因此首先,我們在細胞外的實驗中發現Smad4 會與Daxx625-740 有交互作用但Daxx660-740則無,接著利用點突變實驗,我們發現在細胞外與細胞內的實驗都驗證當Daxx 631到633位置突變後會降低與Lys159類泛素化Smad4蛋白的交互作用,並且失去抑制Smad4轉錄的活性。此外我們也探討Daxx 631到633位置對於Daxx與Promyelocytic leukaemia protein (PML)的交互作用,在細胞內外實驗也發現到突變的Daxx與PML有較弱的交互作用,並且影響其進入PML-NB (PML-nuclear body),綜而言之,Daxx631-633對於其能專一辨認作用的蛋白是重要的,在未來我們將更廣泛去看Daxx這段區域與其他類泛素化蛋白的交互作用是否有保留性。
Sumoylation is an essential post-translational modification regulating diverse cellular functions. Daxx has been reported to associate with several sumoylated proteins, which regulates the transcriptional activity and in certain cases affects their subnuclear compartmentalization. While Daxx can bind to specific sumoylated factors by its SUMO interacting motif (SIM), such binding cannot provide the specificity for substrate recognition. Thus, we hypothesized that additional region or motif within Daxx may contribute to its substrate recognition. In order to identify such substrate recognition motif within Daxx, we first selected its interacting substrate Smad4 for study. Our lab has shown that sumoylation of Smad4 Lys159 is critical for its interaction with Daxx, leading to Smad4 sumoylation-elicited transcriptional repression. By GST pull-down assay, I demonstrated that sumoylated Smad4 at Lys159 can be pulled down by Daxx625-740 rather than by Daxx660-740. Via site-directed mutagenesis, we found that Daxx631-633 is critical for sumoylated Smad4 binding. Similarly, in vivo co-immunoprecipitation experiment presented that Daxx631-633 mutant cannot interact with SUMO-modified Smad4. Additionally, reporter gene assays indicated that Daxx631-633 mutant can mildly repress Smad4-mediated transcriptional activation. Furthermore, we also explored another Daxx interacting substrate, PML. GST pull-down and immunoprecipitation experiments revealed that Daxx631-633 mutant failed to interact with sumoylated PML. Immunofluorescence analysis indicated that the association of Daxx mutant with PML nuclear body was also reduced. Taken together, these results suggested that Daxx 631-633a.a. may play an important role in sumoylated Smad4 and PML recognition. In the future, we will examine whether Daxx631-633 is a conserved substrate recognition motif for other substrates or only specific to Smad4 and PML.
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Chapter I Introduction 1
SUMOylation 2
SUMO machinery 3
SUMO interacting motif (SIM) 4
The role of Daxx 4
Overview of TGF-b signaling 6
Smad4 as a co-Smad 7
PML and PML nuclear bodies 8
Specific Aims 11
Chapter II Materials and Methods 12
Plasmid constructs and site-directed mutagenesis 13
GST Pull-down Assay 13
Cell Culture, Transient Transfection, and Luciferase Reporter Assay 14
Cell lysis, Immunoprecipitation and Immunoblotting 15
Cell Culture, Transient Transfection and Immunofluorescence staining 16
Bacterial Expression and Purification of Daxx 16
Bacterial Expression and Purification of Sumoylated Smad4 17
Circular dichroism (CD) spectroscopy 18
Chapter III Results 19
Purification of sumoylated Smad4-delta-MH1 at K159 20
Identification of the substrate recognition motif on Daxx for interaction with sumoylated Smad4 20
Identification of the substrate recognition motif on Daxx for interaction with sumoylated PML 22
Secondary structure comparison between Daxx625-740 and DaxxK631-633A mutant 22
Identification of the substrate recognition motif on Daxx for interacting with sumoylated Smad4 and PML in vivo 23
DaxxK631-633A mutant abolished Daxx-induced transcriptional repression of Smad4 25
The association of PML nuclear body formation and the recruitment of Daxx 26
Chapter IV Discussion 28
Chapter V Figures 35
Chapter VI Tables 49
References 52
1.Tomanov, K., et al., Sumoylation and phosphorylation: hidden and overt links. J Exp Bot, 2018. 69(19): p. 4583-4590.
2.Lamoliatte, F., et al., Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nat Commun, 2017. 8: p. 14109.
3.Biggar, K.K. and S.S. Li, Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol, 2015. 16(1): p. 5-17.
4.Han, Z.J., et al., The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol, 2018. 52(4): p. 1081-1094.
5.Cremona, C.A., P. Sarangi, and X. Zhao, Sumoylation and the DNA damage response. Biomolecules, 2012. 2(3): p. 376-88.
6.Sternsdorf, T., K. Jensen, and H. Will, Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol, 1997. 139(7): p. 1621-34.
7.Wilkinson, K.A. and J.M. Henley, Mechanisms, regulation and consequences of protein SUMOylation. Biochem J, 2010. 428(2): p. 133-45.
8.Olsen, S.K., et al., Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature, 2010. 463(7283): p. 906-12.
9.Rodriguez, M.S., C. Dargemont, and R.T. Hay, SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem, 2001. 276(16): p. 12654-9.
10.Melchior, F., M. Schergaut, and A. Pichler, SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci, 2003. 28(11): p. 612-8.
11.Minty, A., et al., Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem, 2000. 275(46): p. 36316-23.
12.Hecker, C.M., et al., Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem, 2006. 281(23): p. 16117-27.
13.Song, J., et al., Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem, 2005. 280(48): p. 40122-9.
14.Lin, D.Y., et al., Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell, 2006. 24(3): p. 341-54.
15.Yang, X., et al., Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997. 89(7): p. 1067-76.
16.Perlman, R., et al., TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol, 2001. 3(8): p. 708-14.
17.Chen, L.Y. and J.D. Chen, Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol, 2003. 23(20): p. 7108-21.
18.Lin, D.Y., et al., Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol, 2004. 24(24): p. 10529-41.
19.Chang, C.C., et al., Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem, 2005. 280(11): p. 10164-73.
20.Kuo, H.Y., et al., SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A, 2005. 102(47): p. 16973-8.
21.Kim, E.J., J.S. Park, and S.J. Um, Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res, 2003. 31(18): p. 5356-67.
22.Li, H., et al., Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol, 2000. 20(5): p. 1784-96.
23.Tang, J., et al., A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem, 2004. 279(19): p. 20369-77.
24.Ishov, A.M., O.V. Vladimirova, and G.G. Maul, Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci, 2004. 117(Pt 17): p. 3807-20.
25.Massague, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. EMBO J, 2000. 19(8): p. 1745-54.
26.Blobe, G.C., W.P. Schiemann, and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8.
27.Massague, J., How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000. 1(3): p. 169-78.
28.Hahn, S.A., et al., DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996. 271(5247): p. 350-3.
29.Heldin, C.H., K. Miyazono, and P. ten Dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997. 390(6659): p. 465-71.
30.Zawel, L., et al., Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell, 1998. 1(4): p. 611-7.
31.Chacko, B.M., et al., Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell, 2004. 15(5): p. 813-23.
32.Qin, B., S.S. Lam, and K. Lin, Crystal structure of a transcriptionally active Smad4 fragment. Structure, 1999. 7(12): p. 1493-503.
33.Roelen, B.A., et al., Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-beta-induced nuclear accumulation. Am J Physiol Cell Physiol, 2003. 285(4): p. C823-30.
34.Moren, A., et al., Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem, 2003. 278(35): p. 33571-82.
35.Lee, P.S., et al., Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J Biol Chem, 2003. 278(30): p. 27853-63.
36.Liang, M., et al., Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J Biol Chem, 2004. 279(22): p. 22857-65.
37.Melnick, A. and J.D. Licht, Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 1999. 93(10): p. 3167-215.
38.Jensen, K., C. Shiels, and P.S. Freemont, PML protein isoforms and the RBCC/TRIM motif. Oncogene, 2001. 20(49): p. 7223-33.
39.Li, C., et al., C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation. J Cell Sci, 2017. 130(20): p. 3496-3506.
40.Kamitani, T., et al., Identification of three major sentrinization sites in PML. J Biol Chem, 1998. 273(41): p. 26675-82.
41.Percherancier, Y., et al., Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem, 2009. 284(24): p. 16595-608.
42.Sahin, U., et al., Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol, 2014. 204(6): p. 931-45.
43.Ascoli, C.A. and G.G. Maul, Identification of a novel nuclear domain. J Cell Biol, 1991. 112(5): p. 785-95.
44.Zhong, S., et al., Role of SUMO-1-modified PML in nuclear body formation. Blood, 2000. 95(9): p. 2748-52.
45.Lallemand-Breitenbach, V., et al., Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med, 2001. 193(12): p. 1361-71.
46.Lin, D.Y., et al., Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J Biol Chem, 2003. 278(18): p. 15958-65.
47.Borden, K.L., Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol, 2002. 22(15): p. 5259-69.
48.Yeung, P.L., et al., Daxx contains two nuclear localization signals and interacts with importin alpha3. J Cell Biochem, 2008. 103(2): p. 456-70.
49.Lange, A., et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem, 2007. 282(8): p. 5101-5.
50.Escobar-Cabrera, E., et al., Characterizing the N- and C-terminal Small ubiquitin-like modifier (SUMO)-interacting motifs of the scaffold protein DAXX. J Biol Chem, 2011. 286(22): p. 19816-29.
51.Zhu, J., et al., A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell, 2005. 7(2): p. 143-53.
52.Ecsedy, J.A., J.S. Michaelson, and P. Leder, Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity. Mol Cell Biol, 2003. 23(3): p. 950-60.
53.Tang, J., et al., Daxx is reciprocally regulated by Mdm2 and Hausp. Biochem Biophys Res Commun, 2010. 393(3): p. 542-5.
54.Muromoto, R., et al., Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation. J Immunol, 2006. 177(2): p. 1160-70.
55.Chang, C.C., et al., Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell, 2011. 42(1): p. 62-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔