|
[1] B. Derntl, U. Habel, C. Windischberger, S. Robinson, I. Kryspin-Exner, R.C. Gur, E. Moser, General and specific responsiveness of the amygdala during explicit emotion recognition in females and males, BMC Neurosci 10 (2009). [2] S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn Sci 14(6) (2010) 277-290. [3] M. Tamura, T.J. Spellman, A.M. Rosen, J.A. Gogos, J.A. Gordon, Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task, Nat Commun. 8 (2017). [4] C. Poch, P. Campo, Neocortical-hippocampal dynamics of working memory in healthy and diseased brain states based on functional connectivity, Front Hum Neurosci 6 (2012). [5] D.O. Hebb, J.L. Martinez, S.E. Glickman, The Organization of Behavior - a Neuropsychological Theory - Hebb,Do, Contemp Psychol 39(11) (1994) 1018-1020. [6] G. Buzsaki, Neural Syntax: Cell Assemblies, Synapsembles, and Readers, Neuron 68(3) (2010) 362-385. [7] C.G. Zheng, K.W. Bieri, E. Hwaun, L.L. Colgin, Fast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object-Place Pairings, Eneuro 3(2) (2016). [8] K.W. Bieri, K.N. Bobbitt, L.L. Colgin, Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells, Neuron 82(3) (2014) 670-81. [9] L.L. Colgin, T. Denninger, M. Fyhn, T. Hafting, T. Bonnevie, O. Jensen, M.B. Moser, E.I. Moser, Frequency of gamma oscillations routes flow of information in the hippocampus, Nature 462(7271) (2009) 353-U119. [10] L.L. Colgin, Rhythms of the hippocampal network, Nat Rev Neurosci 17(4) (2016) 239-49. [11] J.E. Lisman, O. Jensen, The Theta-Gamma Neural Code, Neuron 77(6) (2013) 1002-1016. [12] P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn Sci 9(10) (2005) 474-480. [13] A.M. Bastos, J. Vezoli, P. Fries, Communication through coherence with inter-areal delays, Curr Opin. Neurobiol 31 (2015) 173-180. [14] R.K. Cheng, R.M. Liao, Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in rats, Behav Brain Res 331 (2017) 177-187. [15] M.Z. Wang, A.T. Marshall, K. Kirkpatrick, Differential effects of social and novelty enrichment on individual differences in impulsivity and behavioral flexibility, Behav Brain Res 327 (2017) 54-64. [16] D.B.K. Gabriel, T.G. Freels, B. Setlow, N.W. Simon, Risky decision-making is associated with impulsive action and sensitivity to first-time nicotine exposure, Behav Brain Res 359 (2019) 579-588. [17] J.D. Peterson, M.E. Wolf, F.J. White, Impaired DRL 30 performance during amphetamine withdrawal, Behav Brain Res 143(1) (2003) 101-108. [18] R.K. Schwarting, S. Busse, Behavioral facilitation after hippocampal lesion: A review, Behav Brain Res 317 (2017) 401-414. [19] E.J. Popke, A.J. Mayorga, C.M. Fogle, M.G. Paule, Effects of acute nicotine on several operant behaviors in rats, Pharmacol Biochem Be 65(2) (2000) 247-254. [20] C.R. Schuster, J. Zimmerman, Timing Behavior during Prolonged Treatment with Dl-Amphetamine, J Exp Anal Behav 4(3) (1961) 327-330. [21] J.L. Evenden, Varieties of impulsivity, Psychopharmacology (Berl) 146(4) (1999) 348-61. [22] G. Manfre, V. Doyere, S. Bossi, O. Riess, H.P. Nguyen, N. El Massioui, Impulsivity trait in the early symptomatic BACHD transgenic rat model of Huntington disease, Behav Brain Res 299 (2016) 6-10. [23] M.J. Sofis, D.P. Jarmolowicz, S.V. Kaplan, R.C. Gehringer, S.M. Lemley, G. Garg, B.S. Blagg, M.A. Johnson, KU32 prevents 5-fluorouracil induced cognitive impairment, Behav Brain Res 329 (2017) 186-190. [24] A.M. Laszczyk, D. Nettles, T.A. Pollock, S. Fox, M.L. Garcia, J. Wang, L.D. Quarles, G.D. King, FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function, Eneuro 6(2) (2019). [25] L.E. Jarrard, J.T. Becker, The effects of selective hippocampal lesions on DRL behavior in rats, Behav Biol 21(3) (1977) 393-404. [26] C.T. Johnson, D.S. Olton, F.H. Gage, 3rd, P.G. Jenko, Damage to hippocampus and hippocampal connections: effects on DRL and spontaneous alternation, J Comp Physiol Psychol 91(3) (1977) 508-22. [27] G. Acsadi, G. Buzsaki, T. Keszthelyi, L. Kiralyfalvi, F.H. Gage, Effects of confinement, previous experience and hippocampal damage on the DRL schedule, Behav Brain Res 20(2) (1986) 241-8. [28] D.S. Olton, J.T. Becker, G.E. Handelmann, Hippocampus, Space, and Memory, Behav Brain Sci 2(3) (1979) 313-322. [29] J.N.P. Rawlins, E. Tsaltas, The Hippocampus, Time and Working Memory, Behav Brain Res 10(2-3) (1983) 233-262. [30] B.J. Kraus, R.J. Robinson, 2nd, J.A. White, H. Eichenbaum, M.E. Hasselmo, Hippocampal "time cells": time versus path integration, Neuron 78(6) (2013) 1090-101. [31] B.J. Kraus, M.P. Brandon, R.J. Robinson, M.A. Connerney, M.E. Hasselmo, H. Eichenbaum, During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run, Neuron 88(3) (2015) 578-589. [32] J.N. Rawlins, J. Feldon, S. Butt, The effects of delaying reward on choice preference in rats with hippocampal or selective septal lesions, Behav Brain Res 15(3) (1985) 191-203. [33] T.H.C. Cheung, R.N. Cardinal, Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats, Bmc Neurosci 6 (2005). [34] T.Y. Mariano, D.M. Bannerman, S.B. McHugh, T.J. Preston, P.H. Rudebeck, S.R. Rudebeck, J.N. Rawlins, M.E. Walton, M.F. Rushworth, M.G. Baxter, T.G. Campbell, Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task, Eur J Neurosci 30(3) (2009) 472-84. [35] T. Kitamura, M. Pignatelli, J. Suh, K. Kohara, A. Yoshiki, K. Abe, S. Tonegawa, Island cells control temporal association memory, Science 343(6173) (2014) 896-901. [36] M.I. Schlesiger, C.C. Cannova, B.L. Boublil, J.B. Hales, E.A. Mankin, M.P. Brandon, J.K. Leutgeb, C. Leibold, S. Leutgeb, The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity, Nat Neurosci 18(8) (2015) 1123-+. [37] O. Jensen, L.L. Colgin, Cross-frequency coupling between neuronal oscillations, Trends Cogn Sci 11(7) (2007) 267-269. [38] M. Le Van Quyen, The brainweb of cross-scale interactions, New Ideas Psychol 29(2) (2011) 57-63. [39] G. Buzsaki, L.W.S. Leung, C.H. Vanderwolf, Cellular Bases of Hippocampal Eeg in the Behaving Rat, Brain Res Rev 6(2) (1983) 139-171. [40] A. Bragin, G. Jando, Z. Nadasdy, J. Hetke, K. Wise, G. Buzsaki, Gamma (40-100-Hz) Oscillation in the Hippocampus of the Behaving Rat, J Neurosci 15(1) (1995) 47-60. [41] N. Axmacher, M.M. Henseler, O. Jensen, I. Weinreich, C.E. Elger, J. Fell, Cross-frequency coupling supports multi-item working memory in the human hippocampus, Proc Natl Acad Sci U S A 107(7) (2010) 3228-33. [42] A.B. Tort, R.W. Komorowski, J.R. Manns, N.J. Kopell, H. Eichenbaum, Theta-gamma coupling increases during the learning of item-context associations, Proc Natl Acad Sci U S A 106(49) (2009) 20942-7. [43] C.T. Tart, Marijuana Intoxication - Common Experiences, Nature 226(5247) (1970) 701-&. [44] J.R. Tinklenberg, L.E. Hollister, B.S. Kopell, F.T. Melges, Marihuana and Alcohol - Time Production and Memory Functions, Arch Gen Psychiat 27(6) (1972) 812-+. [45] Z. Atakan, P. Morrison, M.G. Bossong, R. Martin-Santos, J.A. Crippa, The Effect of Cannabis on Perception of Time: A Critical Review, Curr Pharm Design 18(32) (2012) 4915-4922. [46] C.J. MacDonald, S. Carrow, R. Place, H. Eichenbaum, Distinct hippocampal time cell sequences represent odor memories in immobilized rats, J Neurosci 33(36) (2013) 14607-16. [47] A.H. Lichtman, S.A. Varvel, B.R. Martin, Endocannabinoids in cognition and dependence, Prostag Leukotr Ess 66(2-3) (2002) 269-285. [48] T. Pattij, M.C.W. Janssen, I. Schepers, G. Gonzalez-Cuevas, T.J. de Vries, A.N.M. Schoffelmeer, Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats, Psychopharmacology 193(1) (2007) 85-96. [49] L.A. Matsuda, S.J. Lolait, M.J. Brownstein, A.C. Young, T.I. Bonner, Structure of a Cannabinoid Receptor and Functional Expression of the Cloned Cdna, Nature 346(6284) (1990) 561-564. [50] W.A. Devane, L. Hanus, A. Breuer, R.G. Pertwee, L.A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, R. Mechoulam, Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor, Science 258(5090) (1992) 1946-1949. [51] P. Campolongo, L. Fattore, Cannabinoid Modulation of Emotion, Memory, and Motivation, Springer New York2015. [52] S.M. Eggan, D.A. Lewis, Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis, Cereb Cortex 17(1) (2007) 175-91. [53] N.H. Morgan, I.M. Stanford, G.L. Woodhall, Modulation of network oscillatory activity and GABAergic synaptic transmission by CB1 cannabinoid receptors in the rat medial entorhinal cortex, Neural Plast 2008 (2008) 808564. [54] A. Araque, P.E. Castillo, O.J. Manzoni, R. Tonini, Synaptic functions of endocannabinoid signaling in health and disease, Neuropharmacology 124 (2017) 13-24. [55] G. Marsicano, P. Lafenetre, Roles of the endocannabinoid system in learning and memory, Curr Top Behav Neurosci 1 (2009) 201-30. [56] A.F. Hoffman, C.R. Lupica, Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus, J Neurosci 20(7) (2000) 2470-9. [57] I. Katona, T.F. Freund, Endocannabinoid signaling as a synaptic circuit breaker in neurological disease, Nat Med 14(9) (2008) 923-930. [58] R.A. Sandler, D. Fetterhoff, R.E. Hampson, S.A. Deadwyler, V.Z. Marmarelis, Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3, Plos Comput Biol 13(7) (2017). [59] J. Han, P. Kesner, M. Metna-Laurent, T.T. Duan, L. Xu, F. Georges, M. Koehl, D.N. Abrous, J. Mendizabal-Zubiaga, P. Grandes, Q.S. Liu, G. Bai, W. Wang, L.Z. Xiong, W. Ren, G. Marsicano, X. Zhang, Acute Cannabinoids Impair Working Memory through Astroglial CB1 Receptor Modulation of Hippocampal LTD, Cell 148(5) (2012) 1039-1050. [60] D. Robbe, S.M. Montgomery, A. Thome, P.E. Rueda-Orozco, B.L. McNaughton, G. Buzsaki, Cannabinoids reveal importance of spike timing coordination in hippocampal function, Nat Neurosci 9(12) (2006) 1526-1533. [61] J. Suh, A.J. Rivest, T. Nakashiba, T. Tominaga, S. Tonegawa, Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory, Science 334(6061) (2011) 1415-1420. [62] T. Kitamura, C. Sun, J. Martin, L.J. Kitch, M.J. Schnitzer, S. Tonegawa, Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory, Neuron 87(6) (2015) 1317-1331. [63] C.J. MacDonald, K.Q. Lepage, U.T. Eden, H. Eichenbaum, Hippocampal "Time Cells" Bridge the Gap in Memory for Discontiguous Events, Neuron 71(4) (2011) 737-749. [64] C.B. Ferster, B.F. Skinner, Schedules of reinforcement, Appleton-Century-Crofts, East Norwalk, CT, US, 1957. [65] M.Z. Wang, A.T. Marshall, K. Kirkpatrick, Differential effects of social and novelty enrichment on individual differences in impulsivity and behavioral flexibility, Behav Brain Res 327 (2017) 54-64. [66] J.D. Peterson, M.E. Wolf, F.J. White, Impaired DRL 30 performance during amphetamine withdrawal, Behav Brain Res 143(1) (2003) 101-8. [67] E.J. Popke, A.J. Mayorga, C.M. Fogle, M.G. Paule, Effects of acute nicotine on several operant behaviors in rats, Pharmacol Biochem Behav 65(2) (2000) 247-254. [68] C.R. Schuster, J. Zimmerman, Timing behavior during prolonged treatment with dl-amphetamine1, J Appl Behav Anal 4(4) (1961) 327-330. [69] A.H. Doughty, J.B. Richards, Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons, J Exp Anal Behav 78(1) (2002) 17-30. [70] J. Farmer, W.N. Schoenfeld, Effects of a Drl Contingency Added to a Fixed-Interval Reinforcement Schedule, J Exp Anal Behav 7 (1964) 391-9. [71] E.E. Kapostins, The effects of drl schedules on some characteristics of word utterance, J Exp Anal Behav 6 (1963) 281-90. [72] J.R. LeFrancois, B. Metzger, Low-response-rate conditioning history and fixed-interval responding in rats, J Exp Anal Behav 59(3) (1993) 543-9. [73] J. Zimmerman, C.R. Schuster, Spaced responding in multiple DRL schedules, J Exp Anal Behav 5 (1962) 497-504. [74] J.L. Becraft, J.C. Borrero, A.E. Mendres-Smith, M.I. Castillo, Decreasing Excessive Bids for Attention in a Simulated Early Education Classroom, J Behav Educ 26(4) (2017) 371-393. [75] M.M. Anglesea, H. Hoch, B.A. Taylor, Reducing rapid eating in teenagers with autism: Use of a pager prompt, J Appl Behav Anal 41(1) (2008) 107-111. [76] C.S. Wright, T.R. Vollmer, Evaluation of a treatment package to reduce rapid eating, J Appl Behav Anal 35(1) (2002) 89-93. [77] N.N. Singh, M.J. Dawson, P. Manning, Effects of spaced responding DRL on the stereotyped behavior of profoundly retarded persons, J Appl Behav Anal 14(4) (1981) 521-6. [78] S.M. Deitz, An analysis of programming DRL schedules in educational settings, Behav Res Ther 15(1) (1977) 103-111. [79] R.K. Cheng, C.J. MacDonald, W.H. Meck, Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing, Pharmacol Biochem Behav 85(1) (2006) 114-22. [80] F.K. Chiang, R.K. Cheng, R.M. Liao, Differential effects of dopamine receptor subtype-specific agonists with respect to operant behavior maintained on a differential reinforcement of low-rate responding (DRL) schedule, Pharmacol Biochem Behav 130 (2015) 67-76. [81] J.N. Rawlins, E. Tsaltas, The hippocampus, time and working memory, Behav Brain Res 10(2-3) (1983) 233-62. [82] B.J. Kraus, R.J. Robinson, J.A. White, H. Eichenbaum, M.E. Hasselmo, Hippocampal "Time Cells": Time versus Path Integration, Neuron 78(6) (2013) 1090-1101. [83] L.J. Siever, Neurobiology of aggression and violence, Am J Psychiatry 165(4) (2008) 429-42. [84] T.H. Cheung, R.N. Cardinal, Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats, BMC Neurosci 6 (2005) 36. [85] G. Buzsaki, E.W. Schomburg, What does gamma coherence tell us about inter-regional neural communication?, Nat Neurosci 18(4) (2015) 484-489. [86] C. Zheng, K.W. Bieri, Y.T. Hsiao, L.L. Colgin, Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus, Neuron 89(2) (2016) 398-408. [87] A. Bragin, G. Jando, Z. Nadasdy, J. Hetke, K. Wise, G. Buzsaki, Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat, J Neurosci 15(1 Pt 1) (1995) 47-60. [88] G. Buzsaki, L.W. Leung, C.H. Vanderwolf, Cellular bases of hippocampal EEG in the behaving rat, Brain Res 287(2) (1983) 139-71. [89] R.M. Liao, R.K. Cheng, Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: Comparison with selective dopamine receptor antagonists, Chin J Physiol 48(1) (2005) 41-50. [90] R.K. Cheng, C.J. MacDonald, C.L. Williams, W.H. Meck, Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior, Learn Mem 15(3) (2008) 153-162. [91] H. Bokil, P. Andrews, J.E. Kulkarni, S. Mehta, P.P. Mitra, Chronux: A platform for analyzing neural signals, J Neurosci Meth 192(1) (2010) 146-151. [92] S.H. Lee, N. Huh, J.W. Lee, J.W. Ghim, I. Lee, M.W. Jung, Neural Signals Related to Outcome Evaluation Are Stronger in CA1 than CA3, Front Neural Circuit 11 (2017). [93] B.P. Wyble, J.M. Hyman, C.A. Rossi, M.E. Hasselmo, Analysis of theta power in hippocampal EEG during bar pressing and running behavior in rats during distinct behavioral contexts, Hippocampus 14(5) (2004) 662-674. [94] G. Buzsaki, Rhythms of the Brain, Oxford University Press2006. [95] M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, C.M. Pennartz, An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias, Neuroimage 55(4) (2011) 1548-65. [96] J.P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le van Quyen, J. Martinerie, F. Varela, Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence, Neurophysiol Clin 32(3) (2002) 157-174. [97] Y.T. Hsiao, C.G. Zheng, L.L. Colgin, Slow gamma rhythms in CA3 are entrained by slow gamma activity in the dentate gyrus, J Neurophysiol 116(6) (2016) 2594-2603. [98] A.C. Yang, C.K. Peng, N.E. Huang, Causal decomposition in the mutual causation system, Nat Commun 9(1) (2018) 3378. [99] N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, P Roy Soc a-Math Phy 454(1971) (1998) 903-995. [100] Z.H. Wu, N.E. Huang, S.R. Long, C.K. Peng, On the trend, detrending, and variability of nonlinear and nonstationary time series, P Natl Acad Sci USA 104(38) (2007) 14889-14894. [101] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv Adapt Data Anal 01(01) (2009) 1-41. [102] A.B. Tort, M.A. Kramer, C. Thorn, D.J. Gibson, Y. Kubota, A.M. Graybiel, N.J. Kopell, Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task, Proc Natl Acad Sci U S A 105(51) (2008) 20517-22. [103] R.M. Liao, R.K. Cheng, Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists, Chin J Physiol 48(1) (2005) 41-50. [104] C.H. Vanderwolf, Hippocampal electrical activity and voluntary movement in the rat, Electroencephalogr Clin Neurophysiol 26(4) (1969) 407-18. [105] L.L. Colgin, Theta-gamma coupling in the entorhinal-hippocampal system, Curr Opin Neurobiol 31 (2015) 45-50. [106] C.G. Zheng, K.W. Bieri, S.G. Trettel, L.L. Colgin, The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats, Hippocampus 25(8) (2015) 924-938. [107] O.J. Ahmed, M.R. Mehta, Running speed alters the frequency of hippocampal gamma oscillations, J Neurosci 32(21) (2012) 7373-83. [108] G. Buzsaki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes, Nat Rev Neurosci 13(6) (2012) 407-20. [109] R. Guevara, J.L.P. Velazquez, V. Nenadovic, R. Wennberg, G. Senjanovic, L.G. Dominguez, Phase synchronization measurements using electroencephalographic recordings - What can we really say about neuronal synchrony?, Neuroinformatics 3(4) (2005) 301-313. [110] M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, MIT Press2014. [111] M. Xing, R. Tadayonnejad, A. MacNamara, O. Ajilore, J. DiGangi, K.L. Phan, A. Leow, H. Klumpp, Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder, Neuroimage Clin 13 (2017) 24-32. [112] E. Florin, S. Baillet, The brain''s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, Neuroimage 111 (2015) 26-35. [113] M.A. Belluscio, K. Mizuseki, R. Schmidt, R. Kempter, G. Buzsaki, Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus, J Neurosci 32(2) (2012) 423-435. [114] E.W. Schomburg, A. Fernandez-Ruiz, K. Mizuseki, A. Berenyi, C.A. Anastassiou, C. Koch, G. Buzsaki, Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks, Neuron 84(2) (2014) 470-85. [115] R. Scheffer-Teixeira, H. Belchior, F.V. Caixeta, B.C. Souza, S. Ribeiro, A.B.L. Tort, Theta Phase Modulates Multiple Layer-Specific Oscillations in the CA1 Region, Cereb Cortex 22(10) (2012) 2404-2414. [116] R. Scheffer-Teixeira, A.B.L. Tort, On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus, Elife 5 (2016). [117] A. Farovik, L.M. Dupont, H. Eichenbaum, Distinct roles for dorsal CA3 and CA1 in memory for sequential nonspatial events, Learn Mem 17(1) (2010) 12-17. [118] R.P. Kesner, M.R. Hunsaker, P.E. Gilbert, The role of CA1 in the acquisition of an object-trace-odor paired associate task, Behav Neurosci 119(3) (2005) 781-6. [119] R.P. Kesner, P.E. Gilbert, L.A. Barua, The role of the hippocampus in memory for the temporal order of a sequence of odors, Behav Neurosci 116(2) (2002) 286-90. [120] M.D. McEchron, H. Bouwmeester, W. Tseng, C. Weiss, J.F. Disterhoft, Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat, Hippocampus 8(6) (1998) 638-46. [121] Y. Wang, S. Romani, B. Lustig, A. Leonardo, E. Pastalkova, Theta sequences are essential for internally generated hippocampal firing fields, Nat Neurosci 18(2) (2015) 282-8. [122] N.T.M. Robinson, J.B. Priestley, J.W. Rueckemann, A.D. Garcia, V.A. Smeglin, F.A. Marino, H. Eichenbaum, Medial Entorhinal Cortex Selectively Supports Temporal Coding by Hippocampal Neurons, Neuron 94(3) (2017) 677-688 e6. [123] A.R. Abela, Y. Duan, Y. Chudasama, Hippocampal interplay with the nucleus accumbens is critical for decisions about time, Eur J Neurosci 42(5) (2015) 2224-33. [124] W.H. Meck, R.M. Church, D.S. Olton, Hippocampus, time, and memory, Behav Neurosci 98(1) (1984) 3-22. [125] J.A. Gray, The neuropsychology of anxiety, Issues Ment Health Nurs 7(1-4) (1985) 201-28. [126] D.M. Bannerman, B.K. Yee, M.A. Good, M.J. Heupel, S.D. Iversen, J.N.P. Rawlins, Double dissociation of function within the hippocampus: A comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions, Behav Neurosci 113(6) (1999) 1170-1188. [127] A.R. Abela, S.D. Dougherty, E.D. Fagen, C.J.R. Hill, Y. Chudasama, Inhibitory Control Deficits in Rats with Ventral Hippocampal Lesions, Cereb Cortex 23(6) (2013) 1396-1409. [128] G. Buzsaki, Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory, Hippocampus 15(7) (2005) 827-840. [129] L.L. Colgin, Mechanisms and functions of theta rhythms, Annu Rev Neurosci 36 (2013) 295-312. [130] V.H. Brun, M.K. Otnass, S. Molden, H.A. Steffenach, M.P. Witter, M.B. Moser, E.I. Moser, Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry, Science 296(5576) (2002) 2243-6. [131] H.A. Steffenach, R.S. Sloviter, E.I. Moser, M.B. Moser, Impaired retention of spatial memory after transection of longitudinally oriented axons of hippocampal CA3 pyramidal cells, Proc Natl Acad Sci U S A 99(5) (2002) 3194-8. [132] R.J. Sutherland, I.Q. Whishaw, B. Kolb, A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat, Behav Brain Res 7(2) (1983) 133-53. [133] T. Hafting, M. Fyhn, S. Molden, M.B. Moser, E.I. Moser, Microstructure of a spatial map in the entorhinal cortex, Nature 436(7052) (2005) 801-6. [134] V.H. Brun, S. Leutgeb, H.Q. Wu, R. Schwarcz, M.P. Witter, E.I. Moser, M.B. Moser, Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex, Neuron 57(2) (2008) 290-302. [135] P.R. Shirvalkar, P.R. Rapp, M.L. Shapiro, Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes, Proc Natl Acad Sci U S A 107(15) (2010) 7054-7059. [136] C.D. Harvey, P. Coen, D.W. Tank, Choice-specific sequences in parietal cortex during a virtual-navigation decision task, Nature 484(7392) (2012) 62-8. [137] C. Kemere, M.F. Carr, M.P. Karlsson, L.M. Frank, Rapid and continuous modulation of hippocampal network state during exploration of new places, Plos One 8(9) (2013) e73114. [138] T.M. Hsu, E.E. Noble, C.M. Liu, A.M. Cortella, V.R. Konanur, A.N. Suarez, D.J. Reiner, J.D. Hahn, M.R. Hayes, S.E. Kanoski, A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling, Mol Psychiatr 23(7) (2018) 1555-1565. [139] A.B.L. Tort, R. Komorowski, H. Eichenbaum, N. Kopell, Measuring Phase-Amplitude Coupling Between Neuronal Oscillations of Different Frequencies, J Neurophysiol 104(2) (2010) 1195-1210. [140] K.M. Igarashi, L. Lu, L.L. Colgin, M.B. Moser, E.I. Moser, Coordination of entorhinal-hippocampal ensemble activity during associative learning, Nature 510(7503) (2014) 143-+. [141] T. Nakazono, T.N. Lam, A.Y. Patel, M. Kitazawa, T. Saito, T.C. Saido, K.M. Igarashi, Impaired In Vivo Gamma Oscillations in the Medial Entorhinal Cortex of Knock-in Alzheimer Model, Front Syst Neurosci 11 (2017) 48. [142] F. Roux, P.J. Uhlhaas, Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information?, Trends Cogn Sci 18(1) (2014) 16-25. [143] T. Hirabayashi, D. Takeuchi, K. Tamura, Y. Miyashita, Triphasic Dynamics of Stimulus-Dependent Information Flow between Single Neurons in Macaque Inferior Temporal Cortex, J Neurosci 30(31) (2010) 10407-10421. [144] J.H. Siegle, M.A. Wilson, Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus, Elife 3 (2014). [145] L. Welberg, Synchrony shows mice the way, Nature Rev Neurosci 15 (2014) 347. [146] United Nations Office on Drugs and Crime (UNODC), World Drug Report 2018, 2018. [147] A. Batalla, S. Bhattacharyya, M. Yucel, P. Fusar-Poli, J.A. Crippa, S. Nogue, M. Torrens, J. Pujol, M. Farre, R. Martin-Santos, Structural and Functional Imaging Studies in Chronic Cannabis Users: A Systematic Review of Adolescent and Adult Findings, Plos One 8(2) (2013). [148] F.M. Filbey, S. Aslan, V.D. Calhoun, J.S. Spence, E. Damaraju, A. Caprihan, J. Segall, Long-term effects of marijuana use on the brain, P Natl Acad Sci U S A 111(47) (2014) 16913-16918. [149] L. Goldschmidt, N.L. Day, G.A. Richardson, Effects of prenatal marijuana exposure on child behavior problems at age 10, Neurotoxicol Teratol 22(3) (2000) 325-336. [150] N.D. Volkow, J.M. Swanson, A.E. Evins, L.E. DeLisi, M.H. Meier, R. Gonzalez, M.A.P. Bloomfield, H.V. Curran, R. Baler, Effects of Cannabis Use on Human Behavior, Including Cognition, Motivation, and Psychosis: A Review, Jama Psychiat 73(3) (2016) 292-297. [151] T. Demirakca, A. Sartorius, G. Ende, N. Meyer, H. Welzel, G. Skopp, K. Mann, D. Hermann, Diminished gray matter in the hippocampus of cannabis users: Possible protective effects of cannabidiol, Drug Alcohol Depen 114(2-3) (2011) 242-245. [152] J.A. Matochik, D.A. Eldreth, J.L. Cadet, K.I. Bolla, Altered brain tissue composition in heavy marijuana users, Drug Alcohol Depen 77(1) (2005) 23-30. [153] M. Yucel, N. Solowij, C. Respondek, S. Whittle, A. Fornito, C. Pantelis, D.I. Lubman, Regional brain abnormalities associated with heavy long-term cannabis use, Eur Neuropsychopharm 18 (2008) S545-S546. [154] G. Battistella, E. Fornari, J.M. Annoni, H. Chtioui, K. Dao, M. Fabritius, B. Favrat, J.F. Mall, P. Maeder, C. Giroud, Long-Term Effects of Cannabis on Brain Structure, Neuropsychopharmacol 39(9) (2014) 2041-2048. [155] R. Martin-Santos, A.B. Fagundo, J.A. Crippa, Z. Atakan, S. Bhattacharyya, P. Allen, P. Fusar-Poli, S. Borgwardt, M. Seal, G.F. Busatto, P. McGuire, Neuroimaging in cannabis use: a systematic review of the literature, Psychol Med 40(3) (2010) 383-398. [156] J. Wrege, A. Schmidt, A. Walter, R. Smieskova, K. Bendfeldt, E.W. Radue, U.E. Lang, S. Borgwardt, Effects of Cannabis on Impulsivity: A Systematic Review of Neuroimaging Findings, Curr Pharm Design 20(13) (2014) 2126-2137. [157] M. Ranganathan, D.C. D''Souza, The acute effects of cannabinoids on memory in humans: a review, Psychopharmacology 188(4) (2006) 425-444. [158] A.B. Ilan, M.E. Smith, A. Gevins, Effects of marijuana on neurophysiological signals of working and episodic memory, Psychopharmacology 176(2) (2004) 214-222. [159] L.E. Wise, A.J. Thorpe, A.H. Lichtman, Hippocampal CB1 Receptors Mediate the Memory Impairing Effects of Delta(9)-Tetrahydrocannabinol, Neuropsychopharmacol 34(9) (2009) 2072-2080. [160] R.E. Hampson, S.A. Deadwyler, Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats, J Neurosci 20(23) (2000) 8932-8942. [161] J. McDonald, L. Schleifer, J.B. Richards, H. de Wit, Effects of THC on behavioral measures of impulsivity in humans, Neuropsychopharmacol 28(7) (2003) 1356-1365. [162] M.A. ElSohly, D. Slade, Chemical constituents of marijuana: The complex mixture of natural cannabinoids, Life Sci 78(5) (2005) 539-548. [163] Y. Gaoni, R. Mechoulam, Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish, J Am Chem Soc 86(8) (1964) 1646-+. [164] D.G. Demuth, A. Molleman, Cannabinoid signalling, Life Sci 78(6) (2006) 549-563. [165] J.M. McPartland, M. Glass, R.G. Pertwee, Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences, Br J Pharmacol 152(5) (2007) 583-93. [166] P. Mailleux, J.J. Vanderhaeghen, Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry, Neuroscience 48(3) (1992) 655-68. [167] M. Herkenham, Cannabinoid receptor localization in brain: relationship to motor and reward systems, Ann N Y Acad Sci 654 (1992) 19-32. [168] I. Svizenska, P. Dubovy, A. Sulcova, Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures - A short review, Pharmacol Biochem Be 90(4) (2008) 501-511. [169] N. Holderith, B. Nemeth, O.I. Papp, J.M. Veres, G.A. Nagy, N. Hajos, Cannabinoids attenuate hippocampal gamma oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells, J Physiol-London 589(20) (2011) 4921-4934. [170] B. Green, D. Kavanagh, R. Young, Being stoned: a review of self-reported cannabis effects, Drug Alcohol Rev 22(4) (2003) 453-460. [171] G.Y. McClure, D.E. McMillan, Effects of drugs on response duration differentiation. VI: differential effects under differential reinforcement of low rates of responding schedules, J Pharmacol Exp Ther 281(3) (1997) 1368-80. [172] D.M. Feeney, The marijuana window: a theory of cannabis use, Behav Biol 18(4) (1976) 455-71. [173] A. Stiglick, H. Kalant, Residual Effects of Prolonged Cannabis Administration on Exploration and Drl Performance in Rats, Psychopharmacology 77(2) (1982) 124-128. [174] R.M. Church, W.H. Meck, J. Gibbon, Application of Scalar Timing Theory to Individual Trials, J Exp Psychol Anim B 20(2) (1994) 135-155. [175] W.H. Meck, R.M. Church, Simultaneous Temporal Processing, J Exp Psychol Anim B 10(1) (1984) 1-29. [176] W.H. Meck, R.M. Church, M.S. Matell, Hippocampus, time, and memory--a retrospective analysis, Behav Neurosci 127(5) (2013) 642-54. [177] D.V. Buonomano, M.D. Mauk, Neural-Network Model of the Cerebellum - Temporal Discrimination and the Timing of Motor-Responses, Neural Comput 6(1) (1994) 38-55. [178] J.R. Tinklenberg, W.T. Roth, B.S. Kopell, Marijuana and ethanol: differential effects on time perception, heart rate, and subjective response, Psychopharmacology (Berl) 49(3) (1976) 275-9. [179] R.L. Dornbush, A. Kokkevi, Acute Effects of Cannabis on Cognitive, Perceptual, and Motor-Performance in Chronic Hashish Users, Ann Ny Acad Sci 282(Dec30) (1976) 313-322. [180] T. Pattij, L.J.M.J. Vanderschuren, The neuropharmacology of impulsive behaviour, Trends Pharmacol Sci 29(4) (2008) 192-199. [181] J.G. Heys, D.A. Dombeck, Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility, Nat Neurosci 21(11) (2018) 1574-1582. [182] D. Robbe, G. Buzsaki, Alteration of Theta Timescale Dynamics of Hippocampal Place Cells by a Cannabinoid Is Associated with Memory Impairment, J Neurosci 29(40) (2009) 12597-12605. [183] P.F. Constoe, B.C. Jones, L. Chin, Delta-9-tetrahydrocannabinol, EEG and behavior:the importance of adaptation to the testing milieu, Pharmacol Biochem Behav 3(2) (1975) 173-7. [184] A.V. Goonawardena, G. Riedel, R.E. Hampson, Cannabinoids Alter Spontaneous Firing, Bursting, and Cell Synchrony of Hippocampal Principal Cells, Hippocampus 21(5) (2011) 520-531. [185] C.R. Lupica, Y.H. Hu, O. Devinsky, A.F. Hoffman, Cannabinoids as hippocampal network administrators, Neuropharmacology 124 (2017) 25-37. [186] C.V. Buhusi, W.H. Meck, What makes us tick? Functional and neural mechanisms of interval timing, Nature Rev Neurosci 6(10) (2005) 755-765. [187] T. Robbins, S.D. Iversen, A dissociation of the effects of d-amphetamine on locomotor activity and exploration in rats, Psychopharmacologia 28(2) (1973) 155-64. [188] W.L. Woolverton, D. Kandel, C.R. Schuster, Tolerance and cross-tolerance to cocaine and d-amphetamine, J Pharmacol Exp Ther 205(3) (1978) 525-35. [189] C.J. Han, J.K. Robinson, Cannabinoid modulation of time estimation in the rat, Behav Neurosci 115(1) (2001) 243-246. [190] A. Egerton, C. Allison, R.R. Brett, J.A. Pratt, Cannabinoids and prefrontal cortical function: Insights from preclinical studies, Neurosci Biobehav R 30(5) (2006) 680-695. [191] S.M. Eggan, D.A. Lewis, Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: A regional and laminar analysis, Cerebral Cortex 17(1) (2007) 175-191. [192] P.D. Skosnik, G.P. Krishnan, D.C. D''Souza, W.P. Hetrick, B.F. O''Donnell, Disrupted Gamma-Band Neural Oscillations During Coherent Motion Perception in Heavy Cannabis Users, Neuropsychopharmacol 39(13) (2014) 3087-3099. [193] J.G. Heys, N.W. Schultheiss, C.F. Shay, Y. Tsuno, M.E. Hasselmo, Effects of acetylcholine on neuronal properties in entorhinal cortex, Front Behav Neurosci 6 (2012). [194] I. Katona, B. Sperlagh, A. Sik, A. Kafalvi, E.S. Vizi, K. Mackie, T.F. Freund, Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons, J Neurosci 19(11) (1999) 4544-4558. [195] P.D. Skosnik, G.P. Krishnan, E.E. Aydt, H.A. Kuhlenshmidt, B.F. O''Donnell, Psychophysiological evidence of altered neural synchronization in cannabis use: Relationship to schizotypy, Am J Psychiat 163(10) (2006) 1798-1805. [196] T. Kitamura, Driving and regulating temporal association learning coordinated by entorhinal-hippocampal network, Neurosci Res 121 (2017) 1-6. [197] S.A. Oprisan, T. Aft, M. Buhusi, C.V. Buhusi, Scalar timing in memory: A temporal map in the hippocampus, J Theor Biol 438 (2018) 133-142. [198] J. Gibbon, R.M. Church, W.H. Meck, Scalar Timing in Memory, Ann Ny Acad Sci 423(May) (1984) 52-77. [199] J. Gibbon, Scalar Expectancy-Theory and Webers Law in Animal Timing, Psychol Rev 84(3) (1977) 279-325. [200] C.V. Buhusi, W.H. Meck, Relativity Theory and Time Perception: Single or Multiple Clocks?, Plos One 4(7) (2009). [201] H. Eichenbaum, Time cells in the hippocampus: a new dimension for mapping memories, Nature Rev Neurosci 15(11) (2014) 732-744. [202] C.J. MacDonald, Prospective and retrospective duration memory in the hippocampus: is time in the foreground or background? (vol 369, 20120463, 2014), Philos T R Soc B 369(1638) (2014). [203] M. Volgushev, M. Chistiakova, W. Singer, Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential, Neuroscience 83(1) (1998) 15-25. [204] Y.H. Cui, I. Prokin, H. Xu, B. Delord, S. Genet, L. Venance, H. Berry, Endocannabinoid dynamics gate spike-timing dependent depression and potentiation, Elife 5 (2016). [205] V. Chevaleyre, P.E. Castillo, Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability, Neuron 38(3) (2003) 461-72. [206] J. Yamamoto, J. Suh, D. Takeuchi, S. Tonegawa, Successful execution of working memory linked to synchronized high-frequency gamma oscillations, Cell 157(4) (2014) 845-57. [207] G. Carlson, Y. Wang, B.E. Alger, Endocannabinoids facilitate the induction of LTP in the hippocampus, Nat Neurosci 5(8) (2002) 723-4. [208] J. Xu, M.D. Antion, T. Nomura, S. Kraniotis, Y.L. Zhu, A. Contractor, Hippocampal Metaplasticity Is Required for the Formation of Temporal Associative Memories, J Neurosci 34(50) (2014) 16762-16773.
|