(3.239.159.107) 您好!臺灣時間:2021/03/08 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳幸蓉
研究生(外文):Hsing-Jung Wu
論文名稱:鼠傷寒沙門氏菌fimU基因的表現
論文名稱(外文):Expression of fimU in Salmonella enterica serovar Typhimurium
指導教授:葉光勝
口試委員:宣詩玲王裕智
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:45
中文關鍵詞:沙門氏菌第一型線毛fimUtRNAArg (UCU)稀有精氨酸密碼 子
DOI:10.6342/NTU201903197
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
沙門氏菌是常見的食源性病原菌,也是造成全球食物中毒以及人畜共通感染爆發的重要致病原。沙門氏菌的線毛可以通過黏附蛋白與上皮細胞的寡甘露醣甘鏈之醣蛋白結合,吸附在細胞上。細菌合成線毛的調控複雜且涉及許多基因,鼠傷寒沙門氏菌具有13種不同的線毛基因組,而第一型線毛由fim基因所轉譯,包含了6個結構基因fimA、fimI、fimC、fimD、fimH和fimF以及5個調控基因fimZ、fimY、stm0551、fimW和fimU。其中fimU基因產物tRNAArg (UCU)為可以識別稀有精氨酸密碼子AGA或AGG的tRNA。鼠傷寒沙門氏菌的fimU與大腸桿菌argU具有相似性。在一項研究中顯示AGA / AGG可以停止轉譯並使核醣體增加以至於蛋白質折疊。先前的研究顯示,tRNAArg (UCU) 藉由辨識FimY中的稀有精氨酸密碼子來調控第一型線毛的表現。本研究對fim的基因序列進行分析,顯示出FimI、FimD、FimZ、Stm0551和FimW也具有可被tRNAArg (UCU)識別的精氨酸密碼子。雖然fimU可以藉著辨識稀有密碼子而做轉譯上的調控,但不知fimU受何種因素所調控。由反轉錄聚合酵素鏈鎖反應的分析顯示,當鼠傷寒沙門氏菌在靜置的培養液或固態培養基上生長時,fimU的表達是相同的。同樣的現象也在鼠傷寒沙門氏菌中的fimZ、fimY、fimW、phoQ和crp基因突變菌株上發現。研究也仿照了細菌隨著食物到達腸胃,會經歷了不同的pH值變換、細菌到達人體的溫度差,以及高溫條件,發現fimU表現皆一致。但不同的是在pH值轉變測試下,只有在pH 3.5的酸性環境,能誘導第一型線毛表現。而在溫度轉變測試下,唯獨在高溫條件下,不表現第一型線毛。由以上測試得知,fimU基因可能為鼠傷寒沙門氏菌內的管家基因,任何環境條件都會持續表現。為了觀測fimU基因與第一型線毛的直接關係,在鼠傷寒沙門氏菌中轉形一個帶有fimU的質體,可以加速誘導第一型線毛表現,酵母菌的凝集片段也比野生型的沙門氏菌來的大。目前測試的環境因子以及調控蛋白不足以影響fimU的表現,但細菌體內有額外的fimU存在的確會促進第一型線毛的表現。fimU基因仍有許多特性值得後續研究。
Salmonella is a commonly seen causative agent of food poisoning and food-borne zoonotic infections outbreaks worldwide. Fimbriae of Salmonella can bind to the oligomannosidic glycoproteins on the epithelial cells through the adhesion protein and adhere to the cells. Regulation of fimbrial biosynthesis in bacteria is complicate and involves a number of genes. There are 13 different fimbrial gene clusters in S. Typhimurium. Expression of the type 1 fimbriae in S. Typhimurium is encoded by the fim gene cluster, which is composed of six structural genes fimA, fimI, fimC, fimD, fimH and fimF, and five regulatory genes fimZ, fimY, stm0551, fimW, and fimU. The regulatory gene fimU encodes a tRNAArg (UCU) that recognizes the rarely used arginine codon AGA or AGG. The fimU of S. Typhimurium is related to the Escherichia coli argU. In one study, it was shown that AGA /AGG can stop the translation and increase the ribosome for protein folding. Previous studies had revealed that tRNAArg (UCU) controls type 1 fimbrial expression by recognizing the rarely used arginine codon within FimY. Our sequence analysis revealed that FimI, FimD, FimZ, Stm0551, and FimW also possessed such arginine codons that can be recognized by tRNAArg (UCU). Although fimU can regulate the translation of the protein by recognizing the rarely used arginine codons, it is not known what factors may regulate the expression of fimU. Reverse-transcription polymerase-chain reaction indicated that the expression of fimU was identical when S. Typhimurium was grown in either static broth or on the agar plate. This same fimU expression pattern in both culture conditions was also observed when the fimZ, fimY, fimW, phoQ, and crp mutant strains were tested. Our study also simulated the environmental cues that S. Typhimurium may encounter when passing through the gastrointestinal tract with food. These conditions included the pH changes, temperature shift, and high temperature. The expression of fimU is consistent under such conditions. Nevertheless, The acidic condition pH 3.5 induced the expression of type 1 fimbriae. Under the temperature conversion test, only high temperature inhibited type 1 fimbrial expression. From the above tests, it is possible that fimU gene is a housekeeping gene in S. Typhimurium and fimU is constitutively expressed express under different conditions. Transforming a recombinant plasmid possessing the fimU gene into S. Typhimurium accelerated the production of type 1 fimbriae, yielding larger agglutination fragments than the parental strain did. From the above results, the current environmental factors and regulatory proteins tested did not influence the expression of fimU. it is known that environmental factors cannot affect the expression of fimU. However, the presence of extra fimU plasmid did activate the expression of type 1 fimbriae. The fimU gene does possess some characteristics to be further explored.
中文摘要……………………………………………………………………...………….i
Abstrsct………………………………………………………………………………….iii
目錄……………………………………………………………………………………...v
表次…………………………………………………………………………………….vii
圖次………………………………………………………………………………...….viii
第一章 緒論………………………………………………………………………….....1
第二章 文獻回顧…………………………………………………………………...…..2
第一節沙門氏菌…………………………………………………………………...…2
1-1 型態與分類學……………………………………………………………...….2
1-2 流行病學……………………………………………………………...……….3
1-3 生化特性…………………………………………………………………...….5
1-4 致病機制…………………………………………………………………...….5
第二節 第一型線毛……………………………………………………………...…6
2-1 沙門氏菌線毛分類………………………………………………………...…6
2-2 第一型線毛的結構與基因調控………………………………….…..……..10
2-3 第一型線毛fimU基因…………………………………………………...…12
2-4 由argU探討fimU功能……………………………………………….…....13
第三節 稀有密碼子………………………………………………………….…....14
第四節 研究目的……………………………………………………………….....15
第三章 材料與方法……………………………………………………………..….…17
第一節 實驗用菌株、質體及培養條件…………………………………..……...17
第二節 確認fim gene cluster上稀有密碼子位置………………………..……....17
第三節 細菌總RNA萃取方法…………………………. …………………...…..17
3-1 細菌的製備…………………………………………………………………..17
3-2 環境的轉變測試……………………………………………………………..18
3-2-1 固態與液態培養……………………………………………………...18
3-2-2溫度的轉移……………………………………………………………18
3-2-3 pH值的轉移…………………………………………………………..18
3-3細菌RNA的萃取 ..…………………………………………………………19
第四節 反轉錄聚合酶鏈鎖反應……………………………………………….…19
第五節 構築添加fimU基因菌株…………………………………………….…..19
第六節 酵母菌凝集試驗…………………………………...……………………..20
第七節 未來實驗計畫……………………………………………………...……..20
第四章 結果……………………………………………………………………...……21
第一節 環境因子對fimU表現的影響………………………………………...…21
第二節 檢測fimU對第一型線毛表現的影響……………………………...……22
第五章 討論……………………………………………………………………...……24
第一節 培養環境差異影響線毛表現探討fimU關聯性………………...………24
第二節 酸性環境對細菌線毛表現之探討………………………………...……..25
第三節 探討溫度對細菌線毛表現影響……………………………………….....26
第六章 參考文獻………………………………………………………...……………28
1.Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A et al: Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathogens 2012, 8(6):e1002776.
2.Myron. S: Theobald Smith. Emerg Infect Dis 2008, 12:1940-1942.
3.Agbaje M, Begum RH, Oyekunle MA, Ojo OE, Adenubi OT: Evolution of Salmonella nomenclature: a critical note. Folia Microbiol 2011, 56(6):497-503.
4.Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Bhonagiri-Palsikar V, Hallsworth-Pepin K, Clifton SW, Weinstock GM, McClelland M: Evolutionary Genomics of Salmonella enterica Subspecies. mBio 2013, 4(2).
5.Edwards RA, Olsen GJ, Maloy SR: Comparative genomics of closely related salmonellae. Trends Microbiol 2002, 10(2):94-99.
6.Besser JM: Salmonella epidemiology: A whirlwind of change. Food Microbiol 2018, 71:55-59.
7.Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM: Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 2011, 8(8):887-900.
8.Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ: Typhoid fever. NEJM 2002, 347(22):1770-1782.
9.Coburn B, Grassl GA, Finlay BB: Salmonella, the host and disease: a brief review. Immunol Cell Biol 2007, 85(2):112-118.
10.Marzel A, Desai PT, Goren A, Schorr YI, Nissan I, Porwollik S, Valinsky L, McClelland M, Rahav G, Gal-Mor O: Persistent Infections by Nontyphoidal Salmonella in Humans: Epidemiology and Genetics. Clin Infect Dis 2016, 62(7):879-886.
11.Parisi A, Crump JA, Glass K, Howden BP, Furuya-Kanamori L, Vilkins S, Gray DJ, Kirk MD: Health Outcomes from Multidrug-Resistant Salmonella Infections in High-Income Countries: A Systematic Review and Meta-Analysis. Foodborne Pathog Dis 2018, 15(7):428-436.
12.Kingsley RA, Baumler AJ: Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol 2000, 36(5):1006-1014.
13.Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschape H, Adams LG, Baumler AJ: Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 2002, 70(5):2249-2255.
14.Mellor KC, Petrovska L, Thomson NR, Harris K, Reid SWJ, Mather AE: Antimicrobial resistance diversity suggestive of distinct Salmonella Typhimurium sources or selective pressures in food-production animals. Front Microbiol 2019, 10:708.
15.Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Gajendran R, Anandan S, Walia K, Veeraraghavan B: Horizontal transfer of antimicrobial resistance determinants among enteric pathogens through bacterial conjugation. Curr Microbiol 2019, 76(6):666-672.
16.Fabrega A, Vila J: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013, 26(2):308-341.
17.McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856.
18.Park YK, Bearson B, Bang SH, Bang IS, Foster JW: Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol 1996, 20(3):605-611.
19.Audia JP, Webb CC, Foster JW: Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. IJMM 2001, 291(2):97-106.
20.Arabyan N, Park D, Foutouhi S, Weis AM, Huang BC, Williams CC, Desai P, Shah J, Jeannotte R, Kong N et al: Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Sci Rep-UK 2016, 6:29525.
21.Hueck CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol R 1998, 62(2):379-433.
22.Hensel M: Salmonella pathogenicity island 2. Mol Microbiol 2000, 36(5):1015-1023.
23.Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW: SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. PNAS 1998, 95(24):14057-14059.
24.McGhie EJ, Hayward RD, Koronakis V: Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. Embo J 2001, 20(9):2131-2139.
25.Patel JC, Galan JE: Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 2006, 175(3):453-463.
26.Crouch ML, Becker LA, Bang IS, Tanabe H, Ouellette AJ, Fang FC: The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol Microbiol 2005, 56(3):789-799.
27.de Jong HK, Parry CM, van der Poll T, Wiersinga WJ: Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog 2012, 8(10):e1002933.
28.Duguid JP, Smith IW, Dempster G, Edmunds PN: Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J Pathol Bacteriol 1955, 70(2):335-348.
29.Thanassi DG, Nuccio SP, Shu Kin So S, Baumler AJ: Fimbriae: Classification and Biochemistry. EcoSal Plus 2007, 2(2).
30.Orskov I, Orskov F: Serologic classification of fimbriae. Curr Top Microbiol 1990, 151:71-90.
31.van Asten AJ, van Dijk JE: Distribution of "classic" virulence factors among Salmonella spp. FEMS Immunol Med Mic 2005, 44(3):251-259.
32.Wiedemann A, Virlogeux-Payant I, Chausse AM, Schikora A, Velge P: Interactions of Salmonella with animals and plants. Front Microbiol 2014, 5:791.
33.Buchanan K, Falkow S, Hull RA, Hull SI: Frequency among Enterobacteriaceae of the DNA sequences encoding type 1 pili. J Bacteriol 1985, 162(2):799-803.
34.Baumler AJ, Tsolis RM, Heffron F: Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun 1996, 64(5):1862-1865.
35.Althouse C, Patterson S, Fedorka-Cray P, Isaacson RE: Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 2003, 71(11):6446-6452.
36.Korhonen TK, Lounatmaa K, Ranta H, Kuusi N: Characterization of type 1 pili of Salmonella typhimurium LT2. J Bacteriol 1980, 144(2):800-805.
37.Old DC, Payne SB: Antigens of the type-2 fimbriae of salmonellae: "cross-reacting material" (CRM) of type-1 fimbriae. J Med Microbiol 1971, 4(2):215-225.
38.Avalos Vizcarra I, Hosseini V, Kollmannsberger P, Meier S, Weber SS, Arnoldini M, Ackermann M, Vogel V: How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci Rep-UK 2016, 6:18109.
39.Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG et al: Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. Langmuir 2012, 28(19):7428-7435.
40.Ong CL, Ulett GC, Mabbett AN, Beatson SA, Webb RI, Monaghan W, Nimmo GR, Looke DF, McEwan AG, Schembri MA: Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 2008, 190(3):1054-1063.
41.Clegg S, Gerlach GF: Enterobacterial fimbriae. J Bacteriol 1987, 169(3):934-938.
42. Old DC, Adegbola RA: A new mannose-resistant haemagglutinin in
Klebsiella. J Appl Bacteriol 1983, 55(1):165-172.
43.Staley TE, Wilson IB: Soluble pig intestinal cell membrane components with affinities for E. coli K88+ antigen. Mol Cell Biochem 1983, 52(2):177-189.
44.Doughty SW, Ruffolo CG, Adler B: The type 4 fimbrial subunit gene of pasteurella multocida. Vet Microbiol 2000, 72(1-2):79-90.
45.Whitchurch CB, Mattick JS: Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 1994, 13(6):1079-1091.
46.De la Cruz MA, Ruiz-Tagle A, Ares MA, Pacheco S, Yanez JA, Cedillo L, Torres J, Giron JA: The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators. Environ Microbiol 2017, 19(5):1761-1775.
47.Strom MS, Lory S: Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 1993, 47:565-596.
48.Duguid JP, Anderson ES, Campbell I: Fimbriae and adhesive properties in Salmonellae. J Pathol Bacteriol 1966, 92(1):107-138.
49.Zogaj X, Bokranz W, Nimtz M, Romling U: Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 2003, 71(7):4151-4158.
50.Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW: Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 1991, 173(15):4773-4781.
51.Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH: Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 2007, 9(12):3077-3090.
52.Hu L: Prevalence of curli genes among Cronobacter species and their roles in biofilm formation and cell-cell aggregation. Int J Food Microbiol 2018, 265:65-73.
53.Zavialov A, Zav''yalova G, Korpela T, Zav''yalov V: FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 2007, 31(4):478-514.
54.Folkesson A, Advani A, Sukupolvi S, Pfeifer JD, Normark S, Lofdahl S: Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol 1999, 33(3):612-622.
55.Zeng L, Zhang L, Wang P, Meng G: Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife 2017, 6.
56.Wu KH, Wang KC, Lee LW, Huang YN, Yeh KS: A constitutively mannose-sensitive agglutinating Salmonella enterica subsp. enterica serovar typhimurium strain, carrying a transposon in the fimbrial usher gene stbC, exhibits multidrug resistance and flagellated phenotypes. Sci World J 2012, 2012:280264.
57.Nuccio SP, Baumler AJ: Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol R 2007, 71(4):551-575.
58.Chessa D, Winter MG, Jakomin M, Baumler AJ: Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol microbiol 2009, 71(4):864-875.
59.Lopez-Garrido J, Casadesus J: Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PloS One 2012, 7(1):e30499.
60.Emmerth M, Goebel W, Miller SI, Hueck CJ: Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol 1999, 181(18):5652-5661.
61.Olsen A, Jonsson A, Normark S: Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 1989, 338(6217):652-655.
62.Norris TL, Kingsley RA, Bumler AJ: Expression and transcriptional control of the Salmonella typhimurium Ipf fimbrial operon by phase variation. Mol Microbiol 1998, 29(1):311-320.
63.Baumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F: The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 1996, 64(1):61-68.
64.Baumler AJ, Heffron F: Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J Bacteriol 1995, 177(8):2087-2097.
65.Baumler AJ, Tsolis RM, Heffron F: The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer''s patches. PNAS 1996, 93(1):279-283.
66.Ledeboer NA, Frye JG, McClelland M, Jones BD: Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 2006, 74(6):3156-3169.
67.Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Baumler AJ: The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 2005, 73(6):3358-3366.
68.Norris TL, Baumler AJ: Phase variation of the lpf operon is a mechanism to evade cross-immunity between Salmonella serotypes. PNAS 1999, 96(23):13393-13398.
69.Kingsley RA, Weening EH, Keestra AM, Baumler AJ: Population heterogeneity of Salmonella enterica serotype Typhimurium resulting from phase variation of the lpf operon in vitro and in vivo. J Bacteriol 2002, 184(9):2352-2359.
70.Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, Taschner N, Burkhard P, Aebi U, Muller SA: Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 2002, 323(5):845-857.
71.Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wuthrich K: NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. J Mol Biol 2008, 375(3):752-763.
72.Alonso-Caballero A, Schonfelder J, Poly S, Corsetti F, De Sancho D, Artacho E, Perez-Jimenez R: Mechanical architecture and folding of E. coli type 1 pilus domains. Nat Commun 2018, 9(1):2758.
73.Le Trong I, Aprikian P, Kidd BA, Thomas WE, Sokurenko EV, Stenkamp RE: Donor strand exchange and conformational changes during E. coli fimbrial formation. J Struct Biol 2010, 172(3):380-388.
74.Zeiner SA, Dwyer BE, Clegg S: FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 2012, 80(9):3289-3296.
75.Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ: Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 1998, 282(5393):1494-1497.
76.Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ: Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 2000, 19(12):2803-2812.
77.Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7-8):496-503.
78.Clegg S, Hughes KT: FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 2002, 184(4):1209-1213.
79.Zeiner SA, Dwyer BE, Clegg S: FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect immun 2013, 81(12):4453-4460.
80.Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC microbiol 2012, 12:111.
81.Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL: YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PloS One 2013, 8(7):e66740.
82.Tinker JK, Clegg S: Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 2001, 40(3):757-768.
83.Abraham JM, Freitag CS, Clements JR, Eisenstein BI: An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. PNAS 1985, 82(17):5724-5727.
84.Chen GT, Inouye M: Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Gene Dev 1994, 8(21):2641-2652.
85.Clouthier SC, Collinson SK, White AP, Banser PA, Kay WW: tRNA(Arg) (fimU) and expression of SEF14 and SEF21 in Salmonella enteritidis. J Bacteriol 1998, 180(4):840-845.
86.Swenson DL, Kim KJ, Six EW, Clegg S: The gene fimU affects expression of Salmonella typhimurium type 1 fimbriae and is related to the Escherichia coli tRNA gene argU. MGG 1994, 244(2):216-218.
87.Kim S, Lee SB: Rare codon clusters at 5''-end influence heterologous expression of archaeal gene in Escherichia coli. Protein Expres Purif 2006, 50(1):49-57.
88.Sakamoto K, Ishimaru S, Kobayashi T, Walker JR, Yokoyama S: The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG. J Bacteriol 2004, 186(17):5899-5905.
89.Garcia-Contreras R, Zhang XS, Kim Y, Wood TK: Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PloS One 2008, 3(6):e2394.
90.Bullas LR, Ryu JI: Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983, 156(1):471-474.
91.Chuang YC, Wang KC, Chen YT, Yang CH, Men SC, Fan CC, Chang LH, Yeh KS: Identification of the genetic determinants of Salmonella enterica serotype Typhimurium that may regulate the expression of the type 1 fimbriae in response to solid agar and static broth culture conditions. BMC microbiol 2008, 8:126.
92.Yeh KS, Tinker JK, Clegg S: FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002, 46(1):1-10.
93.Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 2002, 20(1):87-90.
94.Saini S, Pearl JA, Rao CV: Role of FimW, FimY, and FimZ in regulating the expression of type 1 fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009, 191(9):3003-3010.
95. Müller CM, Aberg A, Straseviçiene J, Emody L, Uhlin BE, Balsalobre C: Type
1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 2009, 5(2):e1000303.
96. Baxter MA, Jones BD: Two-component regulators control hilA expression by
controlling fimZ and hilE expression within Salmonella enterica serovar
Typhimurium. Infect Immun 2015, 83(3):978-85.
97. Lee IS, Slonczewski JL, Foster JW: A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium. J Bacteriol 1994, 176(5):1422-1426.
98.Gawande PV, Bhagwat AA: Protective effects of cold temperature and surface-contact on acid tolerance of Salmonella spp. J Appl Microbiol 2002, 93(4):689-696.
99.Baxter MA, Jones BD: Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2015, 83(3):978-985.
100.Karatzas KA, Hocking PM, Jorgensen F, Mattick K, Leach S, Humphrey TJ: Effects of repeated cycles of acid challenge and growth on the phenotype and virulence of Salmonella enterica. J Appl Microbiol 2008, 105(5):1640-1648.
101.Bearson S, Bearson B, Foster JW: Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997, 147(2):173-180.
102.Cheng F, Wang J, Peng J, Yang J, Fu H, Zhang X, Xue Y, Li W, Chu Y, Jin Q: Gene expression profiling of the pH response in Shigella flexneri 2a. FEMS Microbiol Lett 2007, 270(1):12-20.
103.Morgenroth A, Duguid JP: Demonstration of different mutational sites controlling rhamnose fermentation in FIRN and non-FIRN rha-strains of Salmonella typhimurium: an essay in bacterial archaeology. Genet Res 1968, 11(2):151-169.
104.Old DC: Temperature-dependent utilization of meso-inositol: a useful biotyping marker in the genealogy of Salmonella typhimurium. J Bacteriol 1972, 112(2):779-783.
105.Gally DL, Bogan JA, Eisenstein BI, Blomfield IC: Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 1993, 175(19):6186-6193.
106.Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7-8):496-503.
107.Chang CH: FimZ of Salmonella enterica serovar Typhimurium may mediate different physiological functions. National Taiwan University Master Thesis 2017.
108. Liu ZF: Characterization of the role that fimW plays in the type 1 fimbrial regulatory system in Salmonella enterica serovar Typhimurium. National Taiwan University Master Thesis 2018.
109. Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012, 12:111.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔