|
[1]Marshall, B., & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. The Lancet, 323(8390), 1311-1315. [2]Amieva, M., & Peek Jr, R. M. (2016). Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology, 150(1), 64-78. [3]Bytzer, P., Dahlerup, J. F., Eriksen, J. R., Jarbøl, D. E., Rosenstock, S., & Wildt, S. (2011). Diagnosis and treatment of Helicobacter pylori infection. Dan Med Bull, 58(4), C4271. [4]Megraud, F. (2004). H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut, 53(9), 1374-1384. [5]Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., ... & Goodwin, R. G. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. immunity, 3(6), 673-682. [6]Kayagaki, N., Yamaguchi, N., Nakayama, M., Eto, H., Okumura, K., & Yagita, H. (1999). Type I interferons (IFNs) regulate tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. Journal of Experimental Medicine, 189(9), 1451-1460. [7]Wang, J., Fan, X., Lindholm, C., Bennett, M., O''Connoll, J., Shanahan, F., ... & Ernst, P. B. (2000). Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions. Infection and immunity, 68(7), 4303-4311. [8]Wu, Y. Y., Tsai, H. F., Lin, W. C., Chou, A. H., Chen, H. T., Yang, J. C., ... & Hsu, P. N. (2004). Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells. World journal of gastroenterology: WJG, 10(16), 2334. [9]Walczak, H., & Sprick, M. R. (2001). Biochemistry and function of the DISC. Trends in biochemical sciences, 26(7), 452-453. [10]Sprick, M. R., Weigand, M. A., Rieser, E., Rauch, C. T., Juo, P., Blenis, J., ... & Walczak, H. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity, 12(6), 599-609. [11]Kischkel, F. C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, K. J., & Ashkenazi, A. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 12(6), 611-620. [12]Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., ... & Tschopp, J. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature cell biology, 2(4), 241 [13]Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., ... & Rimoldi, D. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388(6638), 190. [14]Lin, W. C., Tsai, H. F., Liao, H. J., Tang, C. H., Wu, Y. Y., Hsu, P. I., ... & Hsu, P. N. (2014). Helicobacter pylori sensitizes TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human gastric epithelial cells through regulation of FLIP. Cell death & disease, 5(3), e1109. [15]Staal, S. P. (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proceedings of the National Academy of Sciences, 84(14), 5034-5037. [16]Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., ... & Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. cell, 96(6), 857-868. [17]Kodaki, T., Woscholski, R., Hallberg, B., Downward, P. R. V. J., & Parker, P. J. (1994). The activation of phosphatidylinositol 3-kinase by Ras. Current Biology, 4(9), 798-806. [18]Oak, J. S., Chen, J., Peralta, R. Q., Deane, J. A., & Fruman, D. A. (2009). The p85β regulatory subunit of phosphoinositide 3-kinase has unique and redundant functions in B cells. Autoimmunity, 42(5), 447-458. [19]Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101. [20]Manning, B. D., & Toker, A. (2017). AKT/PKB signaling: navigating the network. Cell, 169(3), 381-405. [21]Nam, S. Y., Jung, G. A., Hur, G. C., Chung, H. Y., Kim, W. H., Seol, D. W., & Lee, B. L. (2003). Upregulation of FLIPS by Akt, a possible inhibition mechanism of TRAIL‐induced apoptosis in human gastric cancers. Cancer science, 94(12), 1066-1073. [22]Yang, Z., & Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology, 12(9), 814. [23]Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. [24]Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., ... & Simon, H. U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature cell biology, 8(10), 1124. [25]Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., ... & Walsh, C. M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences, 105(43), 16677-16682. [26]Pyo, J. O., Jang, M. H., Kwon, Y. K., Lee, H. J., Jun, J. I., Woo, H. N., ... & Mizushima, N. (2005). Essential roles of Atg5 and FADD in autophagic cell death dissection of autophagic cell death into vacuole formation and cell death. Journal of Biological Chemistry, 280(21), 20722-20729. [27]Young, M. M., Takahashi, Y., Khan, O., Park, S., Hori, T., Yun, J., ... & Kester, M. (2012). Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. Journal of Biological Chemistry, 287(15), 12455-12468. [28]Jin, Z., Li, Y., Pitti, R., Lawrence, D., Pham, V. C., Lill, J. R., & Ashkenazi, A. (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell, 137(4), 721-735. [29]Jung, C. H., Ro, S. H., Cao, J., Otto, N. M., & Kim, D. H. (2010). mTOR regulation of autophagy. FEBS letters, 584(7), 1287-1295. [30]Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of cell science, 122(20), 3589-3594. [31]Terebiznik, M. R., Raju, D., Vázquez, C. L., Torbricki, K., Kulkarni, R., Blanke, S. R., ... & Jones, N. L. (2009). Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy, 5(3), 370-379. [32]Zhu, P., Xue, J., Zhang, Z. J., Jia, Y. P., Tong, Y. N., Han, D., ... & Tang, B. (2017). Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell death & disease, 8(12), 3207. [33]Kimura, S., Noda, T., & Yoshimori, T. (2007). Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy, 3(5), 452-460. [34]Radoshevich, L., Murrow, L., Chen, N., Fernandez, E., Roy, S., Fung, C., & Debnath, J. (2010). ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 142(4), 590-600. [35]Mukhopadhyay, S., Das, D. N., Panda, P. K., Sinha, N., Naik, P. P., Bissoyi, A., ... & Bhutia, S. K. (2015). Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species. Free Radical Biology and Medicine, 89, 311-321. [36]Greenfield, L. K., & Jones, N. L. (2013). Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends in microbiology, 21(11), 602-612. [37]Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., ... & Liu, H. F. (2016). p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & molecular biology letters, 21(1), 29.
|