跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧靖宜
研究生(外文):Ching-I Lu
論文名稱:喀麥隆兩個地區的患者到結核病診斷的地理模式
論文名稱(外文):Geographic pattern of tuberculosis diagnosis among patients in two regions of Cameroon
指導教授:林先和林先和引用關係
口試委員:江振源詹長權溫在弘方啟泰
口試日期:2019-01-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:30
中文關鍵詞:結核病地理格局診斷跨中心就診
DOI:10.6342/NTU201900611
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景
結核病從發病到康復需要很長的路程。在高負擔環境中,重複訪問結核病中心進行診斷和治療是常見的。在此期間,地理障礙可能是患者是否最終能夠完成治療的一個重要決定因素。但是卻很少有研究使用地理信息系統來評估結核病服務的可及性。本研究旨在評估結核病診斷的地理格局及其在喀麥隆的決定因素。
方法
我們根據2015年至2016年喀麥隆西北和西南地區40個診斷和治療單位中的39個來估計所有通報的結核病患者(n = 1870)的行程距離。通過ArcGIS中的路網並使用研究區域的道路信息,分析估算每位結核病患者的行程距離。我們計算了兩種類型的旅行距離,一種是基於患者地址與最近的TB中心之間的距離(作為地理障礙的代理測量),另一種是基於患者實際上與患者地址到TB中心的距離參觀。如果患者沒有訪問最近的肺結核中心並且兩種類型的距離之間的差異大於5公里,則定義為“跨中心”訪問。我們使用邏輯回歸分析來評估跨中心訪問的因素。
結果
根據39個結核病診斷和治療單位,到最近的結核病中心的中位數旅行距離是5.23公里(IQR = 13.14),但到實際訪問的結核病中心的中位數距離是兩倍(11.82公里,IQR = 27.21) )。總共1946名結核病患者中有609名(31.3%)進行了跨中心就診。在單變量邏輯回歸分析中,結核病中心的區域(西南vs西北,OR = 0.60,95%CI:0.50-0.74),DTU的類型(基於信仰vs公立,OR = 3.72,95%CI:3.04) -4.57),婚姻狀況(已婚vs單身,OR = 1.38,95%CI:1.03-1.84)是與跨中心就診相關的重要因素。
結論
為了改善區域結核病控制設施的可及性,建立結核病中心很重要,但這樣還不夠。在本分析中發現的跨中心就診的現象,表示存在隱藏因素(可能與護理質量相關),這些因素增加了接受結核病治療的障礙,因此迫切需要努力了解跨中心訪問的原因,以提高結核病診斷和治療網絡的效率。
Background
There is a long journey from getting tuberculosis (TB) to recovery. Repetitive visits to TB centers for diagnosis and treatment is common in high-burden settings. During this period, the geographic barriers can be one important determinant of whether the patient could eventually complete the treatment. Few studies used geographic information systems to assess accessibility to TB service. The present study aims to evaluate the geographic barriers of TB diagnosis and treatment and their determinants in Cameroon.
Methods
We estimated the travel distance for all notified TB patients (n=1870) from 39 out of 40 diagnostic and treatment units in the northwest and southwest regions of Cameroon between 2015 and 2016. Travel distance of notified TB patients was estimated by network analysis in ArcGIS using the road information in the study area. We calculated two types of travel distances, one based on the distance between the patient’s address to the nearest TB center (as a proxy measurement of geographic barrier), the other based on the distance between the patient’s address to the TB center that the patient actually visited. A “cross-center” visit is defined if a patient did not visit the nearest TB center and the difference between the two types of distances was greater than 5 kilometers. We used logistic regression analyses to evaluate the factors of cross-center visit.
Results
Based on 39 tuberculosis diagnostic and treatment unit locations, the median travel distance to the nearest TB center was 5.23 kilometers (IQR=13.14), but the median travel distance to the TB center actually visited was two times greater (11.82 kilometers, IQR=27.21). 609 out of 1946 (31.3%) TB patients had cross-center visit. In the univariable logistic regression analysis, region of the DTU (Southwest vs. Northwest, OR=0.60, 95%CI: 0.50-0.74), type of the DTU (faith-based vs public, OR=3.72, 95%CI: 3.04-4.57), marital status (married vs single, OR=1.38, 95%CI: 1.03-1.84) are the significant factors associated with cross-center visit.
Conclusions
To improve accessibility to TB control facilities in areas, the establishment of TB centers is important, but not enough. The prevailing phenomenon of cross-center visit identified in the present analysis suggested that there were hidden factors (probably associated with quality of care) that added to the barriers to receiving TB care. Efforts are needed urgently to understand the reasons of cross-center visit in order to improve the efficiency of TB diagnostic and treatment network.
中文摘要 1
Abstract 3
Chapter 1 Introduction 9
Chapter 2 Methods 11
2.1 Study Population 11
2.2 Data collection and management 12
2.3 Measurement of geographic barriers 13
2.4 Statistical Analysis 14
Chapter 3 Results 16
3.1 Geographic accessibility to TB diagnosis and treatment unit 16
3.2 Comparing the use of DTU from expected and observed 17
3.3 Condition of patients-visit by each DTU 17
3.4 Determinants of cross-center visit 18
Chapter 4 Discussion 18
4.1 Summary 18
4.2 Previous studies of accessing geographic barriers to TB care 19
4.3 Strength and limitations 19
4.4 Public health implication 20
4.5 Conclusion 21
References 29
1.WHO, Global tuberculosis report 2018. 2018.
2.Global strategy and targets for tuberculosis prevention, care and control after 2015. 2014.
3.Dowdy, D.W., et al., Designing and Evaluating Interventions to Halt the Transmission of Tuberculosis. The Journal of infectious diseases, 2017. 216(suppl_6): p. S654-S661.
4.Global Plan to End TB 2016-2020.
5.MacPherson, P., et al., Pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries: a systematic review and meta-analysis. Bulletin of the World Health Organization, 2014. 92(2): p. 126-138.
6.Tesfaye, A., et al., Modeling the patient and health system impacts of alternative xpert® MTB/RIF algorithms for the diagnosis of pulmonary tuberculosis in Addis Ababa, Ethiopia. BMC infectious diseases, 2017. 17(1): p. 318-318.
7.Dangisso, M.H., D.G. Datiko, and B. Lindtjørn, Accessibility to tuberculosis control services and tuberculosis programme performance in southern Ethiopia. Global health action, 2015. 8: p. 29443-29443.
8.Finnie, R.K.C., et al., Factors associated with patient and health care system delay in diagnosis and treatment for TB in sub-Saharan African countries with high burdens of TB and HIV. Tropical Medicine & International Health, 2011. 16(4): p. 394-411.
9.Ross, J.M., et al., Investigating Barriers to Tuberculosis Evaluation in Uganda Using Geographic Information Systems. The American journal of tropical medicine and hygiene, 2015. 93(4): p. 733-738.
10.Onyoh, E.F., C. Kuaban, and H.H. Lin, Pre-treatment loss to follow-up of pulmonary tuberculosis patients in two regions of Cameroon. The International Journal of Tuberculosis and Lung Disease, 2018. 22(4): p. 378-384.
11.Diefenbach-Elstob, T., et al., The social determinants of tuberculosis treatment adherence in a remote region of Papua New Guinea. BMC Public Health, 2017. 17(1): p. 70.
12.Makwakwa, L., et al., Patient and heath system delays in the diagnosis and treatment of new and retreatment pulmonary tuberculosis cases in Malawi. BMC infectious diseases, 2014. 14: p. 132-132.
13.Smith, C.M., et al., Optimising spatial accessibility to inform rationalisation of specialist health services. International Journal of Health Geographics, 2017. 16: p. 15.
14.Tadesse, T., et al., Long distance travelling and financial burdens discourage tuberculosis DOTs treatment initiation and compliance in Ethiopia: a qualitative study. BMC public health, 2013. 13: p. 424-424.
15.Muture, B.N., et al., Factors associated with default from treatment among tuberculosis patients in nairobi province, Kenya: A case control study. BMC Public Health, 2011. 11(1): p. 696.
16.Garrido, M.d.S., et al., Factors Associated with Tuberculosis Treatment Default in an Endemic Area of the Brazilian Amazon: A Case Control-Study. PLOS ONE, 2012. 7(6): p. e39134.
17.Juran, S., et al., Geospatial mapping of access to timely essential surgery in sub-Saharan Africa. BMJ Global Health, 2018. 3(4): p. e000875.
18.Ruktanonchai, C.W., et al., Temporal trends in spatial inequalities of maternal and newborn health services among four east African countries, 1999-2015. BMC public health, 2018. 18(1): p. 1339-1339.
19.Sanou, A., et al., Access and adhering to tuberculosis treatment: barriers faced by patients and communities in Burkina Faso. The International Journal of Tuberculosis and Lung Disease, 2004. 8(12): p. 1479-1483.
20.Shaweno, D., et al., Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review. BMC medicine, 2018. 16(1): p. 193-193.
21.Wong, M.S., et al., Racial Differences in Geographic Access to Medical Care as Measured by Patient Report and Geographic Information Systems. Medical care, 2017. 55(9): p. 817-822.
22.Hanson, C.L., et al., Conducting Patient-Pathway Analysis to Inform Programming of Tuberculosis Services: Methods. The Journal of Infectious Diseases, 2017. 216(suppl_7): p. S679-S685.
23.Global Plan to Stop TB 2006-2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top