跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝懿
研究生(外文):Yi Hsieh
論文名稱:癲癇腦波與抗癲癇藥物作用之關聯性分析
論文名稱(外文):The instantaneous EEG frequency assessment among various AEDs usage for epileptic treatment
指導教授:蔡瑞章蔡瑞章引用關係饒敦
指導教授(外文):Jui-Chang TsaiTun Jao
口試委員:吳文超
口試委員(外文):Wen-Chau Wu
口試日期:2019-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫療器材與醫學影像研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:37
中文關鍵詞:癲癇腦波支持向量機希爾伯特黃轉換抗癲癇藥物瞬間頻率
DOI:10.6342/NTU201904014
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織在2015 年的報告顯示,癲癇疾患每年影響了世界上3.3% 的人口。有高達32.5% 的患者因為各種原因而放棄的抗癲癇藥物的治療。其中有 12.4% 的患者因為藥物副作用所造成的困擾而放棄治療 ; 有 11.6% 因為所開立的抗癲癇藥物無顯著療效而選擇性地放棄治療 ; 最後,有剩下的 8.5% 的患者因為上述兩者原因而最終放棄治療。因此,如何提升患者依從性與有效率的選用藥劑成為相當重要的環節。為了能夠從腦波中擷取足夠的潛在資訊,在此研究中使用了時域上的頻率變化轉換。在這個研究中使用了八個種演算來針對腦波非線性與非穩態之特性來進行特徵提取。研究結果顯示,針對癲癇發生時之腦波進行轉換與演算後再進行支持性向量機的雙向比對所得到對於服用Phenobarbital 與Phenytoin 的患者有73.95%的辨認精準度 ; 對於服用Phenobarbital 與 Levetiracetam 的患者有64.75% 的辨認精準度 ; 對於服用Phenytoin 與 Levetiracetam的患者有68.25% 的辨認精準度。然而,完整的腦波 (其中包含了發作期間、正常期間、發作前期間) 經過運算與特徵擷取後放入支持向量機分類取得了96%, 91.25%, and 97.5% 的比對精準度。最後針對三種用藥者的腦波進行運算後的預兆期 (發作前 10ms) 與發作期進行比對後針對Phenobarbital 得到了80% ; 針對Levetiracetam 得到了75% ; 針對 Phenytoin 得到了85%的辨認精準度。最後結論,此研究證明了癲癇腦預兆期的存在並且可以使用 EEG 演算後偵測到。另外,對於針對時域-頻率變化上,訊號震盪與了解癲癇波段的腦波最有關聯性。
In accordance to the World Health Organization (WHO)’s statistical review in 2015, epilepsy has been affecting almost 3.3% of global population every year. According to previous research. There are more than 32.5% of patient has invalid control of epilepsy. Among them, there are 12.4% quit the treatment because of the adverse effect of AED, 11.6% stop accepting the medication due to the lack of efficacy of the AED prescribed, and 8.5% of patients quit because of mixture of two issues Thus providing a method for reducing the non-adherence problem during the AED therapy is crucial. In order to extract adequate encrypted information from extracranial EEG, a temporal-frequency study has been performed in data preparation. Additionally, eight features were taken into consideration to recognize the non-stationary and non-linear epileptiform of EEG. In the result, an average of 73.95% accuracy, 64.75% accuracy, and 68.25% accuracy were performed in an SVM pattern recognition for the pair-comparison of ical EEG segment between Phenobarbital versus Phenytoin, Phenobarbital versus Levetiracetam, and Phenytoin versus Levetiracetam respectively. With the pair-comparison the accuracy for classifying of the whole spectrum EEG of Phenobarbital versus Phenytoin, Phenobarbital versus Levetiracetam, and Phenytoin versus Levetiracetam intakes were 96%, 91.25%, and 97.5% respectively. For the recognition of ictal and pre-ictal segregation, the EEG of patients gotten prescribed with Phenobarbital, Levetiracetam, and Phenytoin were 80%, 75%, and 85% accuracy respectively. In the conclusion, this research proved the existence of pre-ical activity, and the signal fluctuation of temporal-frequency information is the most relatable features for recognizing onset movement of a seizure.
口試委員會審定書 LETTER OF COMMISIONER VERIFICATION i
誌謝 AKNOWLEDGEMENT ii
中文摘要CHINESE ABSTRACT iii
英文摘要ENGLISH ABSTRACT iv
1. INTRODUCTION 1
1.1. INEFFECTIVENESS OF CURRENT AED TREATMENT 1
1.2. DEFICIENCY OF CLINICAL ELECTROPHYILOGICAL RECORDINGS 2
2. BACKGROUND 3
2.1. EPILEPTIC SEIZURE 3
2.1.1. PATHOLOGICAL DEFINITION 3
2.1.2. CLASSIFICATION 3
2.2. INTRA-STIMULATION 5
2.2.1. VAGUS NERVE NEUROSTIMULATION 5
2.2.2. DEEP BRAIN STIMULATION 7
2.2.3. RESPONSIVE NEUROSTIMULATION 8
3. LITERATURE REVIEW 8
3.1. TEMPROAL INFORMATION OF EPILEPTIC SEIZURE 8
3.2. SIGNAL PROSSESSING OF EPILEPTIFORM 10
3.3. EARLY APPROACH OF ANTICIPATING ONSET 10
3.4. HILBERT-HUANG TRANSFORMATION BASED PROCESSING 11
4. METHODOLOGY 12
4.1. SUBJECTS 13
4.2. IPSILATERAL EAR REFERENCE ORIENTATION OF EEG 13
4.3. INTRINSIC MODE FUNCTION HILBERT-HUANG 15
4.4. APPLYING EEG FEAGURE SELECTION AND EXTRACTION 17
4.5. APPLYING SUPPORT VECTOR MACHINE ON EEG FEATURES 19
5. RESULT 21
5.1. SVM CLASSIFICATION ON DIFFERENT AED INTERFERED EEG 21
5.2. SVM SELECTED FEATURES 23
5.3. PRE-ICTAL PERIOD DETECTION 27
6. CONCLUSION AND DISCUSSION 28
6.1. THE EXISTENCE OF PRE-ICTAL PERIOD 28
6.2. AED EFFECT ENCRYPTION IN THE EEG 28
6.3. NUMBER OF EXTREMA AND ZERO-CROSSING REPRESENTATION 29
7. REFERENCE 30
Abdulhay, E., Alafeef, M., Abdelhay, A., & Al-Bashir, A. (2017). Classification of Normal, Ictal and Inter-ictal EEG via Direct Quadrature and Random Forest Tree. Journal of medical and biological engineering, 37(6), 843-857.
Amorim, B. O., Covolan, L., Ferreira, E., Brito, J. G., Nunes, D. P., de Morais, D. G., . . . Hamani, C. (2015). Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats. Journal of Neuroinflammation, 12. doi:ARTN 162
10.1186/s12974-015-0384-7
Bhardwaj, A., Tiwari, A., Krishna, R., & Varma, V. (2016). A novel genetic programming approach for epileptic seizure, detection. Computer Methods and Programs in Biomedicine, 124, 2-18. doi:10.1016/j.cmpb.2015.10.001
Brodtkorb, E., Samsonsen, C., Sund, J. K., Brathen, G., Helde, G., & Reimers, A. (2016). Treatment non-adherence in pseudo-refractory epilepsy. Epilepsy Research, 122, 1-6. doi:10.1016/j.eplepsyres.2016.02.001
Camfield, P., & Camfield, C. (2008). When is it safe to discontinue AED treatment? Epilepsia, 49, 25-28. doi:10.1111/j.1528-1167.2008.01923.x
Chang, S.-Y., Shon, Y. M., Agnesi, F., & Lee, K. H. (2009). Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux. Paper presented at the Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE.
Colic, S., Wither, R. G., Lang, M., Zhang, L., Eubanks, J. H., & Bardakjian, B. L. (2017). Prediction of antiepileptic drug treatment outcomes using machine learning. Journal of Neural Engineering, 14(1). doi:Artn 016002
10.1088/1741-2560/14/1/016002
De Curtis, M., & Avoli, M. (2016). GABA ergic networks jump‐start focal seizures. Epilepsia, 57(5), 679-687.
Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T. G., & Toumazou, C. (2014). Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic Seizures. Plos One, 9(6). doi:ARTN e96235
10.1371/journal.pone.0096235
Englot, D. J., Hassnain, K. H., Rolston, J. D., Harward, S. C., Sinha, S. R., & Haglund, M. M. (2017). Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy & Behavior, 66, 4-9.
Evern Burakgazi, J. A. F. (2016). Treament of epilepsy in adults. Epileptic Disorders, 18(3), 18. doi:10.1684/epd.2016.0336
Fisher, R. S., & Scharfman, H. E. (2014). How can we identify ictal and interictal abnormal activity? In Issues in Clinical Epileptology: A View from the Bench (pp. 3-23): Springer.
Freestone, D. R., Karoly, P. J., Peterson, A. D. H., Kuhlmann, L., Lai, A., Goodarzy, F., & Cook, M. J. (2015). Seizure Prediction: Science Fiction or Soon to Become Reality? Current Neurology and Neuroscience Reports, 15(11). doi:ARTN 73
10.1007/s11910-015-0596-3
García-Pallero, M. A., García-Navarrete, E., Torres, C. V., Pastor, J., Navas, M., & Sola, R. (2017). Effectiveness of vagal nerve stimulation in medication-resistant epilepsy. Comparison between patients with and without medication changes. Acta Neurochirurgica, 159(1), 131-136.
Garzon, P., Lemelle, L., & Auvin, S. (2016). Childhood absence epilepsy: An update. Archives de pediatrie: organe officiel de la Societe francaise de pediatrie, 23(11), 1176.
Guida, M., Iudice, A., Bonanni, E., & Giorgi, F. S. (2015). Effects of antiepileptic drugs on interictal epileptiform discharges in focal epilepsies: an update on current evidence. Expert Review of Neurotherapeutics, 15(8), 947-959. doi:10.1586/14737175.2015.1065180
Hartl, E., Feddersen, B., Botzel, K., Mehrkens, J. H., & Noachtar, S. (2017). Seizure Control and Active Termination by Anterior Thalamic Deep Brain Stimulation. Brain Stimulation, 10(1), 168-170. doi:10.1016/j.brs.2016.10.003
Hodaie, M., Wennberg, R. A., Dostrovsky, J. O., & Lozano, A. M. (2002). Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia, 43(6), 603-608.
Hoekstra, B. P. T., Diks, C. G. H., Allessie, M. A., & Degoede, J. (1994). Application of Nonlinear Time-Series Analysis to Electrically-Induced Atrial-Fibrillation in Man. Journal of Physiology-London, 479p, P68-P69. Retrieved from ://WOS:A1994PA70800093
Huang, N. E., Long, S. R., & Shen, Z. (1996). The mechanism for frequency downshift in nonlinear wave evolution. Advances in applied mechanics, 32, 59-117C.
Husain, S. J., & Rao, K. (2014). A Neural Network Model for Predicting Epileptic Seizures based on Fourier-Bessel Functions. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(5), 299-308.
Iasemidis, L. D., Sackellares, J. C., Zaveri, H. P., & Williams, W. J. (1990). Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain topography, 2(3), 187-201.
Janszky, J., Szucs, A., Rasonyi, G., Schulz, R., Hoppe, M., Hollo, A., . . . Ebner, A. (2004). Intentional seizure interruption may decrease the seizure frequency in drug-resistant temporal lobe epilepsy. Seizure-European Journal of Epilepsy, 13(3), 156-160. doi:10.1016/S1059-1311(03)00162-6
Jehi, L. (2014). Responsive Neurostimulation: The Hope and the Challenges. Epilepsy Currents, 14(5), 270-271. Retrieved from ://WOS:000342472700009
Jensen, M. S., & Yaari, Y. (1988). The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy. Annals of Neurology, 24(5), 591-598.
Johannessen, K. (2015). The Duffing oscillator with damping. European Journal of Physics, 36(6). doi:Artn 065020
10.1088/0143-0807/36/6/065020
Kim, H. J., Park, K. D., Choi, K. G., & Lee, H. W. (2016). Clinical predictors of seizure recurrence after the first post-ischemic stroke seizure. Bmc Neurology, 16. doi:ARTN 212
10.1186/s12883-016-0729-6
Knudsen-Baas, K. M., Power, K. N., Engelsen, B. A., Hegrestad, S. E., Gilhus, N. E., & Storstein, A. M. (2016). Status epilepticus secondary to glioma. Seizure-European Journal of Epilepsy, 40, 76-80. doi:10.1016/j.seizure.2016.06.013
Kokoszka, M. A., McGoldrick, P. E., La Vega-Talbott, M., Raynes, H., Palmese, C. A., Wolf, S. M., . . . Ghatan, S. (2017). Epilepsy surgery in patients with autism. Journal of Neurosurgery-Pediatrics, 19(2), 196-207. doi:10.3171/2016.7.Peds1651
Krishna, V., Sammartino, F., King, N. K. K., So, R. Q. Y., & Wennberg, R. (2016). Neuromodulation for Epilepsy. Neurosurgery Clinics of North America, 27(1), 123-+. doi:10.1016/j.nec.2015.08.010
Kumar, T. S., Kanhangad, V., & Pachori, R. B. (2015). Classification of seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal Processing and Control, 15, 33-40.
Kuo, M.-C., Jao, T., & Liu, H.-H. (2016). Update of Neurositmulation for Refractory Epilepsy: Deep Brain Stimulation and Responsive Neurostimulation. Acta Neurologica Taiwanica, 25(1), 38-48.
Kurihara, T. (2005). New classification and treatment for myotonic disorders. Internal Medicine, 44(10), 1027-1032. doi:DOI 10.2169/internalmedicine.44.1027
Lai, Y.-C., Harrison, M. A. F., Frei, M. G., & Osorio, I. (2003). Inability of Lyapunov exponents to predict epileptic seizures. Physical Review Letters, 91(6), 068102.
Lasoń, W., Chlebicka, M., & Rejdak, K. (2013). Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacological Reports, 65(4), 787-801.
Lasoń, W., Dudra-Jastrzębska, M., Rejdak, K., & Czuczwar, S. J. (2011). Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: an update. Pharmacological Reports, 63(2), 271-292.
Le Van Quyen, M., Martinerie, J., Baulac, M., & Varela, F. (1999). Anticipating epileptic seizures in real time by a non‐linear analysis of similarity between EEG recordings. Neuroreport, 10(10), 2149-2155.
Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. (2013). Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in biology and medicine, 43(7), 807-816.
Lie, O. V., & Cavazos, J. E. (2014). Responsive neurostimulation in epilepsy therapy: Some answers, lingering questions. Epilepsy & Behavior, 34, 25-28. doi:10.1016/j.yebeh.2014.02.014
Lim, K. S., & Tan, C. T. (2010). Epilepsies in the Elderly. Atlas of Epilepsies, 1313-1320.
Litt, B., & Echauz, J. (2002). Prediction of epileptic seizures. The Lancet Neurology, 1(1), 22-30.
Litt, B., Esteller, R., Echauz, J., D''Alessandro, M., Shor, R., Henry, T., . . . Dichter, M. (2001). Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron, 30(1), 51-64.
Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clemenceau, S., Renault, B., & Varela, F. J. (1998). Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine, 4(10), 1173-1176.
Meditronic. (2015). Study Shows Medtronic Deep Brain Stimulation Therapy for Treatment-Resistant Epilepsy Demonstrates Significant and Sustained Seizure Reduction at Five Years. Food and Drug Administration. Retrieved from http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=2018349
Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., & Laxminarayan, R. (2016). Health and economic benefits of public financing of epilepsy treatment in India: An agent‐based simulation model. Epilepsia.
Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomedical Engineering Online, 10. doi:Artn 38
10.1186/1475-925x-10-38
Ozdogan, S., Nurhat, R. H., Duzkalir, A. H., Yuce, D., Sabuncuoglu, H., Gokcil, Z., & Erdogan, E. (2016). Vagal Nerve Stimulation Effects on Generalized-Partial Seizures and Medication in Adult Drug-Resistant Epilepsy Patients. Turkish Neurosurgery, 26(3), 347-351. doi:10.5137/1019-5149.Jtn.8534-13.2
P. Farooque, K. D., R.H. Mattson. (2014). Epilepsy; Antiepileptic Drug Profiles. Encyclopedia of the Neurological Sciences, 2, 12. doi:10.1016/B978-0-12-385157-4.00279-7
Pachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373-381. doi:10.1016/j.cmpb.2011.03.009
Pachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494-502.
Perucca, P., & Gilliam, F. G. (2012). Adverse effects of antiepileptic drugs. The Lancet Neurology, 11(9), 792-802.
Pitkanen, A., Loscher, W., Vezzani, A., Becker, A. J., Simonato, M., Lukasiuk, K., . . . Beck, H. (2016). Advances in the development of biomarkers for epilepsy. Lancet Neurology, 15(8), 843-856. Retrieved from ://WOS:000377545800021
Rahman, M. O., & Karim, M. N. (2015). Predicting epileptic seizure from Electroencephalography (EEG) using hilbert huang transformation and neural network. BRAC University,
Rajneesh, K. F., & Binder, D. K. (2009). Tumor-associated epilepsy. Neurosurgical Focus, 27(2). doi:Artn E4
10.3171/2009.5.Focus09101
Salam, M. T., Velazquez, J. L. P., & Genov, R. (2016). Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 710-719. doi:10.1109/Tnsre.2015.2498973
Schevernels, H., van Bochove, M. E., De Taeye, L., Bombeke, K., Vonck, K., Van Roost, D., . . . Boehler, C. N. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy & Behavior, 64, 171-179. doi:10.1016/j.yebeh.2016.09.014
Schuyler, R., White, A., Staley, K., & Cios, K. (2007). Identification of Ictal and Pre-Ictal States using RBF Networks with Wavelet-Decomposed EEG. IEEE EMB, 26(2), 86-93.
Serdaroglu, A., Arhan, E., Kurt, G., Erdem, A., Hirfanoglu, T., Aydin, K., & Bilir, E. (2016). Long term effect of vagus nerve stimulation in pediatric intractable epilepsy: an extended follow-up. Childs Nervous System, 32(4), 641-646. doi:10.1007/s00381-015-3004-z
Sharma, R., & Pachori, R. B. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications, 42(3), 1106-1117. doi:10.1016/j.eswa.2014.08.030
Spencer, D. (2016). Responsive Neurostimulation and Cognition. Epilepsy Currents, 16(2), 98-100. Retrieved from ://WOS:000374898200007
Sweeney-Reed, C. M., Lee, H., Rampp, S., Zaehle, T., Buentjen, L., Voges, J., . . . Schmitt, F. C. (2016). Thalamic interictal epileptiform discharges in deep brain stimulated epilepsy patients. Journal of Neurology, 263(10), 2120-2126. doi:10.1007/s00415-016-8246-5
Udupa, K., & Chen, R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Progress in Neurobiology, 133, 27-49. doi:10.1016/j.pneurobio.2015.08.001
Wang, K. L., Chai, Q., Qiao, H., Zhang, J. G., Liu, T. H., & Meng, F. G. (2016). Vagus nerve stimulation balanced disrupted default-mode network and salience network in a postsurgical epileptic patient. Neuropsychiatric Disease and Treatment, 12, 2561-2570. doi:10.2147/Ndt.S116906
Warner, N. M., Gwinn, R. P., & Doherty, M. J. (2016). Individualizing therapies with responsive epilepsy neurostimulation - A mirtazapine case study of hippocampal excitability. Epilepsy & Behavior Case Reports, 6, 70-72. doi:10.1016/j.ebcr.2016.06.002
Weber, Y. G., Nies, A. T., Schwab, M., & Lerche, H. (2014). Genetic Biomarkers in Epilepsy. Neurotherapeutics, 11(2), 324-333. doi:10.1007/s13311-014-0262-5
Wei, C.-X., Bian, M., & Gong, G.-H. (2015). Current research on antiepileptic compounds. Molecules, 20(11), 20741-20776.
Wennberg, R., Valiante, T., & Cheyne, D. (2011). EEG and MEG in mesial temporal lobe epilepsy: Where do the spikes really come from? Clinical Neurophysiology, 122(7), 1295-1313. doi:10.1016/j.clinph.2010.11.019
WHO. (2017). Epilepsy - Fact Sheet. World health organization. Retrieved from http://www.who.int/mediacentre/factsheets/fs999/en/
Yu, W., Walling, I., Smith, A. B., Ramirez-Zamora, A., Pilitsis, J. G., & Shin, D. S. (2016). Deep Brain Stimulation of the Ventral Pallidum Attenuates Epileptiform Activity and Seizing Behavior in Pilocarpine-Treated Rats. Brain Stimulation, 9(2), 285-295. doi:10.1016/j.brs.2015.11.006
Zhu, J.-D., Lin, C.-F., Chang, S.-H., Wang, J.-H., Peng, T.-I., & Chien, Y.-Y. (2015). Analysis of spike waves in epilepsy using Hilbert-Huang transform. Journal of Medical Systems, 39(1), 170.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊