跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子恩
研究生(外文):Tzu-En Huang
論文名稱:膽酸與雙氫青蒿素混成化合物於肝細胞癌細胞株之抗癌活性評估
論文名稱(外文):Evaluation of anticancer activity of bile acid-dihydroartemisinin hybrids in hepatocellular carcinoma cells
指導教授:許麗卿許麗卿引用關係
指導教授(外文):Lih-Ching Hsu
口試委員:顧記華孔繁璐
口試委員(外文):Juh-Hwa GuhFan-Lu Kung
口試日期:2019-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:66
中文關鍵詞:肝細胞癌膽酸與雙氫青蒿素混成化合物G0/G1 期停滯細胞凋亡活性含氧物粒線體膜電位去極化
DOI:10.6342/NTU201901639
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝細胞癌 (Hepatocellular carcinoma, HCC) 是在成人中最常見的原發性肝臟惡性腫瘤,也佔有原發性肝癌的 90%。根據國際癌症研究署 (International Agency for Research on Cancer, IARC) 在 2018 年所估計的資料,肝癌是造成全球癌症死亡的第四大主要原因。雙氫青蒿素 (Dihydroartemisinin, DHA) 是青蒿素衍生物主要的活性代謝物,也是用於治療瘧疾的著名藥物。在之前的文獻研究中,DHA 已被證明對多種人類癌症具有抗腫瘤作用。為了要增加對癌細胞的細胞毒性作用,合成了一系列的膽酸與雙氫青蒿素混成化合物 (bile acid-dihydroartemisinin, BA-DHA)。其中,UDC-DHA (#12) 是對 HCC 細胞最有效的化合物,其對 HepG2 細胞的 IC50 值為 1.75 μM 以及對 Huh-7 細胞的 IC50 值為2.16 μM。此外,UDC-DHA (#12) 相較於 DHA (#1) 及 UDCA (#2) 以 1:1 莫爾比率的合併使用更有效。在本篇的研究中,也探討了 UDC-DHA (#12) 的作用機轉。藉由流式細胞儀分析經過 propidium iodide (PI) 染色的細胞,可以觀察到 UDC-DHA (#12) 引起細胞停滯於 G0/G1 期以及增加代表細胞凋亡的 subG1 細胞群。UDC-DHA (#12) 在 HepG2 細胞中顯著地引起細胞凋亡指標,包括 caspase-9 與 caspase-3 的活化以及使 PARP 失去活性。有趣的是,透過 2′,7′-dichlorofluorescin diacetate (DCFH-DA) assay 可以觀察到 DHA (#1) 與 UDC DHA (#12) 隨著時間顯著地提升活性含氧物 (reactive oxygen species, ROS),而 ROS 分別在 12 小時與 24 小時達到最高峰。我們的結果更進一步顯示 ROS 的誘發及粒線體膜電位 (mitochondrial membrane potential, MMP) 去極化皆可被抗氧化劑 N-acetylcysteine (NAC) 抑制,因此說明此兩現象促成 UDC-DHA (#12) 的抗癌作用。綜合以上所述,UDC-DHA (#12) 可做為對抗 HCC 的候選藥物,因此還需要更深入地探討詳細的藥物機轉。
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for up to 90% of all primary liver cancer. Based on the data estimated by the International Agency for Research on Cancer (IARC) in 2018, liver cancer is the fourth common cause of cancer death overall in the world. Dihydroartemisinin (DHA), a main active metabolite of artemisinin derivatives, is a well-known drug used in the treatment against malaria. In previous studies, DHA has been demonstrated to exhibit antitumor effects toward a wide range of human cancers. In order to improve the cytotoxic effect against cancer cells, a series of bile acid-dihydroartemisinin (BA-DHA) hybrids were synthesized. Among them, UDC-DHA (#12) is the most potent anticancer compound against HCC cells with IC50 values of 1.75 μM (HepG2 cells) and 2.16 μM (Huh-7 cells). Moreover, UDC-DHA (#12) is more potent than the combination of DHA (#1) and UDCA (#2) at 1:1 molar ratio. In this study, the mechanism of action of UDC DHA (#12) was also investigated. The propidium iodide (PI) staining and flow cytometric analysis demonstrated that UDC DHA (#12) significantly induced G0/G1 arrest and further induced subG1 populations, which represent the apoptotic cells. Apoptotic markers including cleaved caspase-9, caspase-3, and cleaved PARP were significantly induced by UDC DHA (#12) in HepG2 cells. Interestingly, the 2′,7′ Dichlorofluorescin diacetate (DCFH DA) assay demonstrated that DHA (#1) and UDC DHA (#12) significantly elevated cellular reactive oxygen species (ROS) levels over time and the ROS levels peaked at 12 h and 24 h, respectively. Furthermore, our results indicated that both induction of ROS and depolarization of mitochondrial membrane potential (MMP), which could be reversed by an antioxidant N acetylcysteine (NAC), contributed to the anticancer effect of UDC DHA (#12). In conclusion, UDC-DHA (#12) could be a drug candidate against HCC and further investigation of the detailed mechanism is warranted.
國立臺灣大學碩士學位論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
List of Abbreviations xii
Aim of the study 1
Chapter 1. Introduction 3
1.1. Liver cancer - hepatocellular carcinoma (HCC) 3
1.1.1. Incidence and mortality rates 3
1.1.2. Risk factors 3
1.1.3. Symptoms 4
1.1.4. Diagnostic tests 4
1.1.5. Stages and survival rates 5
1.1.6. Treatments 5
1.2. Human hepatocellular carcinoma cell lines 6
1.3. Dihydroartemisinin (DHA) 7
1.4. Bile acid-dihydroartemisinin (BA-DHA) hybrids 8
1.5. Oxidative stress 8
1.6. Programmed cell death 9
1.6.1. Apoptosis 9
1.6.2. Autophagy 11
1.6.3. Necroptosis 12
Chapter 2. Materials and Methods 21
2.1. Materials 21
2.2. Methods 22
2.2.1. Cell culture 22
2.2.2. Cell viability assay 22
2.2.3. Cell growth inhibition assay 23
2.2.4. Cell cycle analysis 23
2.2.5. Measurement of reactive oxygen species (ROS) 24
2.2.6. Measurement of mitochondrial membrane potential (MMP) 24
2.2.7. Western blotting 25
2.2.8. Data analysis 26
Chapter 3. Results 27
3.1. Screening of potential anticancer compounds in HCC cells by the MTT assay 27
3.2. Testing the cytotoxicity of the BAs in HCC cells by the MTT assay 28
3.3. Effects of DHA (#1), UDCA (#2), and UDC-DHA (#12) on cell cycle progression and apoptosis in HCC cells 28
3.4. Effects of DHA (#1) and UDC-DHA (#12) on ROS generation in HepG2 cells 29
3.5. Effects of DHA (#1) and UDC-DHA (#12) on depolarization of MMP in HCC cells 30
3.6. Effects of DHA (#1) and UDC-DHA (#12) on apoptosis markers in HepG2 cells 30
3.7. Effects of the combination of UDC-DHA (#12) and UDCA (#2) on cell survival in HepG2 cells 31
3.8. Stability of DHA (#1) and UDC-DHA (#12) in the medium 31
3.9. Stability of DHA (#1) and UDC-DHA (#12) in HepG2 cells 32
Chapter 4. Discussion 51
4.1. Effects of the combination of DHA (#1) and UDCA (#2) on cell survival 51
4.2. Effects of DHA (#1) and UDC-DHA (#12) on cell cycle progression and apoptosis 51
4.3. Effects of DHA (#1) and UDC-DHA (#12) on ROS generation 52
4.4. Effects of DHA (#1) and UDC-DHA (#12) on depolarization of MMP 53
4.5. Effects of the combination of UDC-DHA (#12) and UDCA (#2) on cell survival 54
4.6. Stability of DHA (#1) and UDC-DHA (#12) in the medium and cells 54
Chapter 5. Conclusion 56
References 58
1.American Cancer Society. What Is Liver Cancer.
https://www.cancer.org/cancer/liver-cancer/about/what-is-liver-cancer.html.
Accessed on 17 June, 2019.
2.Ozakyol, A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer 2017, 48, 238-240.
3.Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68, 394-424.
4.Ministry of Health and Welfare. Statistics of Causes of Death.
https://www.mohw.gov.tw/cp-3961-42866-2.html.
Accessed on 17 June, 2019.
5.Cancer Research UK. BCLC staging system and the Child-Pugh system.
https://www.cancerresearchuk.org/about-cancer/liver-cancer/stages/bclc-staging-system-child-pugh-system.
Accessed on 17 June, 2019.
6.Zhang, H. and Yang, T. Staging systems for hepatocellular carcinoma. J Tumor 2013, 1, 20-23.
7.Balogh, J., Victor, D., 3rd, Asham, E. H., Burroughs, S. G., Boktour, M., Saharia, A., et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 2016, 3, 41-53.
8.Slezakova, S. and Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res 2017, 37, 5995-6003.
9.Qin, G. Q., Zhao, C. B., Zhang, L. L., Liu, H. Y., Quan, Y. Y., Chai, L. Y., et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis 2015, 20, 1072-1086.
10.Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017, 46, 65-83.
11.Marchesi, E., Chinaglia, N., Capobianco, M. L., Marchetti, P., Huang, T. E., Weng, H. C., et al. Dihydroartemisinin-bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. Chemmedchem 2019, 14, 779-787.
12.Zhu, R. X., Seto, W. K., Lai, C. L. and Yuen, M. F. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 2016, 10, 332-339.
13.American Cancer Society. Liver Cancer Stages.
https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/staging.html.
Accessed on 17 June, 2019.
14.Dhanasekaran, R., Limaye, A. and Cabrera, R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med 2012, 4, 19-37.
15.American Cancer Society. Tests for Liver Cancer.
https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/how-diagnosed.html.
Accessed on 17 June, 2019.
16.American Cancer Society. Treating Liver Cancer. .
https://www.cancer.org/cancer/liver-cancer/treating.html.
Accessed on 17 June, 2019.
17.Gomes, A. R., Abrantes, A. M., Brito, A. F., Laranjo, M., Casalta-Lopes, J. E., Goncalves, A. C., et al. Influence of p53 on the radiotherapy response of hepatocellular carcinoma. Clin Mol Hepatol 2015, 21, 257-267.
18.Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R. and Ozturk, M. Abnormal structure and expression of p53 Gene in human hepatocellular-carcinoma. Proc Natl Acad Sci USA 1990, 87, 1973-1977.
19.Hsu, I. C., Tokiwa, T., Bennett, W., Metcalf, R. A., Welsh, J. A., Sun, T., et al. p53 gene mutation and integrated hepatitis-B viral-DNA sequences in human liver-cancer cell-lines. Carcinogenesis 1993, 14, 987-992.
20.Morris, C. A., Duparc, S., Borghini-Fuhrer, I., Jung, D., Shin, C. S. and Fleckenstein, L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J 2011, 10, 263.
21.Im, E., Yeo, C., Lee, H. J. and Lee, E. O. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci 2018, 192, 286-292.
22.Salvador, J. A., Carvalho, J. F., Neves, M. A., Silvestre, S. M., Leitao, A. J., Silva, M. M., et al. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013, 30, 324-374.
23.Jean-Louis, S., Akare, S., Ali, M. A., Mash, E. A., Meuillet, E. and Martinez, J. D. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem 2006, 281, 14948-14960.
24.Coleman, R., Iqbal, S., Godfrey, P. P. and Billington, D. Membranes and bile formation - composition of several mammalian biles and their membrane-damaging properties. Biochem J 1979, 178, 201-208.
25.Zhang, R., Gong, J., Wang, H. and Wang, L. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line. World J Gastroentero 2005, 11, 5109-5116.
26.Horowitz, N. S., Hua, J., Powell, M. A., Gibb, R. K., Mutch, D. G. and Herzog, T. J. Novel cytotoxic agents from an unexpected source: Bile acids and ovarian tumor apoptosis. Gynecol Oncol 2007, 107, 344-349.
27.Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Bio Med 2017, 104, 144-164.
28.Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014, 16, 193-217.
29.Liou, G. Y. and Storz, P. Reactive oxygen species in cancer. Free Radic Res 2010, 44, 479-496.
30.Trachootham, D., Alexandre, J. and Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009, 8, 579-591.
31.Fuchs, Y. and Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147, 742-758.
32.Green, D. R. and Llambi, F. Cell death signaling. Cold Spring Harb Perspect Biol 2015, 7, a006080.
33.McIlwain, D. R., Berger, T. and Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013, 5, a008656.
34.Chaitanya, G. V., Steven, A. J. and Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010, 8, 31.
35.Ichim, G. and Tait, S. W. G. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 2016, 16, 539-548.
36.Lin, L. and Baehrecke, E. H. Autophagy, cell death, and cancer. Mol Cell Oncol 2015, 2, e985913.
37.Tanida, I., Ueno, T. and Kominami, E. LC3 and autophagy. Methods Mol Biol 2008, 445, 77-88.
38.Cicchini, M., Karantza, V. and Xia, B. Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res 2015, 21, 498-504.
39.Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012, 45, 487-498.
40.Su, Z., Yang, Z., Xu, Y., Chen, Y. and Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015, 14, 48.
41.Mao, H. T., Gu, H. T., Qu, X., Sun, J. T., Song, B. F., Gao, W. J., et al. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med 2013, 31, 213-218.
42.Feng, M. X., Hong, J. X., Wang, Q., Fan, Y. Y., Yuan, C. T., Lei, X. H., et al. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts. Sci Rep UK 2016, 6, 19074.
43.Lu, J. J., Chen, S. M., Zhang, X. W., Ding, J. and Meng, L. H. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drug 2011, 29, 1276-1283.
44.Lu, M., Sun, L. H. R., Zhou, J. and Yang, J. Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway. Tumor Biol 2014, 35, 5307-5314.
45.Lu, J. J., Meng, L. H., Cai, Y. J., Chen, Q., Tong, L. J., Lin, L. P., et al. Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol Ther 2008, 7, 1017-1023.
46.Wang, Z., Hu, W., Zhang, J. L., Wu, X. H. and Zhou, H. J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2012, 2, 103-112.
47.Hou, J., Wang, D., Zhang, R. and Wang, H. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 2008, 14, 5519-5530.
48.Zhang, C. Z., Zhang, H., Yun, J., Chen, G. G. and Lai, P. B. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 2012, 83, 1278-1289.
49.Liao, K., Li, J. and Wang, Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3beta/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int J Clin Exp Pathol 2014, 7, 8684-8691.
50.Jiang, J., Geng, G., Yu, X., Liu, H., Gao, J., An, H., et al. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-kappaB/GLUT1 axis. Oncotarget 2016, 7, 87271-87283.
51.Li, Y., Wang, Y., Kong, R., Xue, D., Pan, S., Chen, H., et al. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network. Oncotarget 2016, 7, 62460-62473.
52.Smit, F. J., van Biljon, R. A., Birkholtz, L. M. and N''Da, D. D. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem 2015, 90, 33-44.
53.Xu, C. C., Deng, T., Fan, M. L., Lv, W. B., Liu, J. H. and Yu, B. Y. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives. Eur J Med Chem 2016, 107, 192-203.
54.Tian, Y., Liang, Z., Xu, H., Mou, Y. H. and Guo, C. Design, synthesis and cytotoxicity of novel dihydroartemisinin-coumarin hybrids via click chemistry. Molecules 2016, 21, 758.
55.Yu, H. N., Hou, Z., Tian, Y., Mou, Y. H. and Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur J Med Chem 2018, 151, 434-449.
56.Perrone, D., Bortolini, O., Fogagnolo, M., Marchesi, E., Mari, L., Massarenti, C., et al. Synthesis and in vitro cytotoxicity of deoxyadenosine-bile acid conjugates linked with 1,2,3-triazole. New J Chem 2013, 37, 3559-3567.
57.Brossard, D., Lechevrel, M., El Kihel, L., Quesnelle, C., Khalid, M., Moslemi, S., et al. Synthesis and biological evaluation of bile carboxamide derivatives with pro-apoptotic effect on human colon adenocarcinoma cell lines. Eur J Med Chem 2014, 86, 279-290.
58.Agarwal, D. S., Anantaraju, H. S., Sriram, D., Yogeeswari, P., Nanjegowda, S. H., Mallu, P., et al. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids 2016, 107, 87-97.
59.Navacchia, M. L., Marchesi, E., Mari, L., Chinaglia, N., Gallerani, E., Gavioli, R., et al. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules 2017, 22, 1710.
60.Lee, S., Cho, Y. Y., Cho, E. J., Yu, S. J., Lee, J. H., Yoon, J. H., et al. Synergistic effect of ursodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Int J Mol Med 2018, 42, 2551-2559.
61.Reiser, M., Neumann, I., Schmiegel, W., Wu, P. C. and Lau, J. Y. N. Induction of cell proliferation arrest and apoptosis in hepatoma cells through adenoviral-mediated transfer of p53 gene. J Hepatol 2000, 32, 771-782.
62.Freed-Pastor, W. A. and Prives, C. Mutant p53: one name, many proteins. Genes Dev 2012, 26, 1268-1286.
63.Krungkrai, J. and Krungkrai, S. R. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize. Asian Pac J Trop Bio 2016, 6, 371-375.
64.Jezek, J., Cooper, K. F. and Strich, R. Reactive oxygen species and mitochondrial dynamics: The Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 2018, 7, 13.
65.Dominguez, M. F., Macias, R. I., Izco-Basurko, I., de La Fuente, A., Pascual, M. J., Criado, J. M., et al. Low in vivo toxicity of a novel cisplatin-ursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors. J Pharmacol Exp Ther 2001, 297, 1106-1112.
66.Briz, O., Serrano, M. A., Rebollo, N., Hagenbuch, B., Meier, P. J., Koepsell, H., et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivativescis-diammine-chloro-cholylglycinate-platinum (II) and cis-diammine-bisursodeoxycholate-platinum (II) toward liver cells. Mol pharmacol 2002, 61, 853-860.
67.St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B. and Meier, P. J. Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 2001, 204, 1673-1686.
68.Parapini, S., Olliaro, P., Navaratnam, V., Taramelli, D. and Basilico, N. Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays. Antimicrob Agents Chemother 2015, 59, 4046-4052.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊