|
1.American Cancer Society. What Is Liver Cancer. https://www.cancer.org/cancer/liver-cancer/about/what-is-liver-cancer.html. Accessed on 17 June, 2019. 2.Ozakyol, A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer 2017, 48, 238-240. 3.Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68, 394-424. 4.Ministry of Health and Welfare. Statistics of Causes of Death. https://www.mohw.gov.tw/cp-3961-42866-2.html. Accessed on 17 June, 2019. 5.Cancer Research UK. BCLC staging system and the Child-Pugh system. https://www.cancerresearchuk.org/about-cancer/liver-cancer/stages/bclc-staging-system-child-pugh-system. Accessed on 17 June, 2019. 6.Zhang, H. and Yang, T. Staging systems for hepatocellular carcinoma. J Tumor 2013, 1, 20-23. 7.Balogh, J., Victor, D., 3rd, Asham, E. H., Burroughs, S. G., Boktour, M., Saharia, A., et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 2016, 3, 41-53. 8.Slezakova, S. and Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res 2017, 37, 5995-6003. 9.Qin, G. Q., Zhao, C. B., Zhang, L. L., Liu, H. Y., Quan, Y. Y., Chai, L. Y., et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis 2015, 20, 1072-1086. 10.Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017, 46, 65-83. 11.Marchesi, E., Chinaglia, N., Capobianco, M. L., Marchetti, P., Huang, T. E., Weng, H. C., et al. Dihydroartemisinin-bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. Chemmedchem 2019, 14, 779-787. 12.Zhu, R. X., Seto, W. K., Lai, C. L. and Yuen, M. F. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 2016, 10, 332-339. 13.American Cancer Society. Liver Cancer Stages. https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/staging.html. Accessed on 17 June, 2019. 14.Dhanasekaran, R., Limaye, A. and Cabrera, R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med 2012, 4, 19-37. 15.American Cancer Society. Tests for Liver Cancer. https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-staging/how-diagnosed.html. Accessed on 17 June, 2019. 16.American Cancer Society. Treating Liver Cancer. . https://www.cancer.org/cancer/liver-cancer/treating.html. Accessed on 17 June, 2019. 17.Gomes, A. R., Abrantes, A. M., Brito, A. F., Laranjo, M., Casalta-Lopes, J. E., Goncalves, A. C., et al. Influence of p53 on the radiotherapy response of hepatocellular carcinoma. Clin Mol Hepatol 2015, 21, 257-267. 18.Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R. and Ozturk, M. Abnormal structure and expression of p53 Gene in human hepatocellular-carcinoma. Proc Natl Acad Sci USA 1990, 87, 1973-1977. 19.Hsu, I. C., Tokiwa, T., Bennett, W., Metcalf, R. A., Welsh, J. A., Sun, T., et al. p53 gene mutation and integrated hepatitis-B viral-DNA sequences in human liver-cancer cell-lines. Carcinogenesis 1993, 14, 987-992. 20.Morris, C. A., Duparc, S., Borghini-Fuhrer, I., Jung, D., Shin, C. S. and Fleckenstein, L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J 2011, 10, 263. 21.Im, E., Yeo, C., Lee, H. J. and Lee, E. O. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life Sci 2018, 192, 286-292. 22.Salvador, J. A., Carvalho, J. F., Neves, M. A., Silvestre, S. M., Leitao, A. J., Silva, M. M., et al. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013, 30, 324-374. 23.Jean-Louis, S., Akare, S., Ali, M. A., Mash, E. A., Meuillet, E. and Martinez, J. D. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem 2006, 281, 14948-14960. 24.Coleman, R., Iqbal, S., Godfrey, P. P. and Billington, D. Membranes and bile formation - composition of several mammalian biles and their membrane-damaging properties. Biochem J 1979, 178, 201-208. 25.Zhang, R., Gong, J., Wang, H. and Wang, L. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line. World J Gastroentero 2005, 11, 5109-5116. 26.Horowitz, N. S., Hua, J., Powell, M. A., Gibb, R. K., Mutch, D. G. and Herzog, T. J. Novel cytotoxic agents from an unexpected source: Bile acids and ovarian tumor apoptosis. Gynecol Oncol 2007, 107, 344-349. 27.Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Bio Med 2017, 104, 144-164. 28.Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014, 16, 193-217. 29.Liou, G. Y. and Storz, P. Reactive oxygen species in cancer. Free Radic Res 2010, 44, 479-496. 30.Trachootham, D., Alexandre, J. and Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009, 8, 579-591. 31.Fuchs, Y. and Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147, 742-758. 32.Green, D. R. and Llambi, F. Cell death signaling. Cold Spring Harb Perspect Biol 2015, 7, a006080. 33.McIlwain, D. R., Berger, T. and Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013, 5, a008656. 34.Chaitanya, G. V., Steven, A. J. and Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010, 8, 31. 35.Ichim, G. and Tait, S. W. G. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 2016, 16, 539-548. 36.Lin, L. and Baehrecke, E. H. Autophagy, cell death, and cancer. Mol Cell Oncol 2015, 2, e985913. 37.Tanida, I., Ueno, T. and Kominami, E. LC3 and autophagy. Methods Mol Biol 2008, 445, 77-88. 38.Cicchini, M., Karantza, V. and Xia, B. Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res 2015, 21, 498-504. 39.Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012, 45, 487-498. 40.Su, Z., Yang, Z., Xu, Y., Chen, Y. and Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015, 14, 48. 41.Mao, H. T., Gu, H. T., Qu, X., Sun, J. T., Song, B. F., Gao, W. J., et al. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med 2013, 31, 213-218. 42.Feng, M. X., Hong, J. X., Wang, Q., Fan, Y. Y., Yuan, C. T., Lei, X. H., et al. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts. Sci Rep UK 2016, 6, 19074. 43.Lu, J. J., Chen, S. M., Zhang, X. W., Ding, J. and Meng, L. H. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drug 2011, 29, 1276-1283. 44.Lu, M., Sun, L. H. R., Zhou, J. and Yang, J. Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway. Tumor Biol 2014, 35, 5307-5314. 45.Lu, J. J., Meng, L. H., Cai, Y. J., Chen, Q., Tong, L. J., Lin, L. P., et al. Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol Ther 2008, 7, 1017-1023. 46.Wang, Z., Hu, W., Zhang, J. L., Wu, X. H. and Zhou, H. J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2012, 2, 103-112. 47.Hou, J., Wang, D., Zhang, R. and Wang, H. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 2008, 14, 5519-5530. 48.Zhang, C. Z., Zhang, H., Yun, J., Chen, G. G. and Lai, P. B. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 2012, 83, 1278-1289. 49.Liao, K., Li, J. and Wang, Z. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3beta/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells. Int J Clin Exp Pathol 2014, 7, 8684-8691. 50.Jiang, J., Geng, G., Yu, X., Liu, H., Gao, J., An, H., et al. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-kappaB/GLUT1 axis. Oncotarget 2016, 7, 87271-87283. 51.Li, Y., Wang, Y., Kong, R., Xue, D., Pan, S., Chen, H., et al. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network. Oncotarget 2016, 7, 62460-62473. 52.Smit, F. J., van Biljon, R. A., Birkholtz, L. M. and N''Da, D. D. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur J Med Chem 2015, 90, 33-44. 53.Xu, C. C., Deng, T., Fan, M. L., Lv, W. B., Liu, J. H. and Yu, B. Y. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives. Eur J Med Chem 2016, 107, 192-203. 54.Tian, Y., Liang, Z., Xu, H., Mou, Y. H. and Guo, C. Design, synthesis and cytotoxicity of novel dihydroartemisinin-coumarin hybrids via click chemistry. Molecules 2016, 21, 758. 55.Yu, H. N., Hou, Z., Tian, Y., Mou, Y. H. and Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur J Med Chem 2018, 151, 434-449. 56.Perrone, D., Bortolini, O., Fogagnolo, M., Marchesi, E., Mari, L., Massarenti, C., et al. Synthesis and in vitro cytotoxicity of deoxyadenosine-bile acid conjugates linked with 1,2,3-triazole. New J Chem 2013, 37, 3559-3567. 57.Brossard, D., Lechevrel, M., El Kihel, L., Quesnelle, C., Khalid, M., Moslemi, S., et al. Synthesis and biological evaluation of bile carboxamide derivatives with pro-apoptotic effect on human colon adenocarcinoma cell lines. Eur J Med Chem 2014, 86, 279-290. 58.Agarwal, D. S., Anantaraju, H. S., Sriram, D., Yogeeswari, P., Nanjegowda, S. H., Mallu, P., et al. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids 2016, 107, 87-97. 59.Navacchia, M. L., Marchesi, E., Mari, L., Chinaglia, N., Gallerani, E., Gavioli, R., et al. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules 2017, 22, 1710. 60.Lee, S., Cho, Y. Y., Cho, E. J., Yu, S. J., Lee, J. H., Yoon, J. H., et al. Synergistic effect of ursodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Int J Mol Med 2018, 42, 2551-2559. 61.Reiser, M., Neumann, I., Schmiegel, W., Wu, P. C. and Lau, J. Y. N. Induction of cell proliferation arrest and apoptosis in hepatoma cells through adenoviral-mediated transfer of p53 gene. J Hepatol 2000, 32, 771-782. 62.Freed-Pastor, W. A. and Prives, C. Mutant p53: one name, many proteins. Genes Dev 2012, 26, 1268-1286. 63.Krungkrai, J. and Krungkrai, S. R. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize. Asian Pac J Trop Bio 2016, 6, 371-375. 64.Jezek, J., Cooper, K. F. and Strich, R. Reactive oxygen species and mitochondrial dynamics: The Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 2018, 7, 13. 65.Dominguez, M. F., Macias, R. I., Izco-Basurko, I., de La Fuente, A., Pascual, M. J., Criado, J. M., et al. Low in vivo toxicity of a novel cisplatin-ursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors. J Pharmacol Exp Ther 2001, 297, 1106-1112. 66.Briz, O., Serrano, M. A., Rebollo, N., Hagenbuch, B., Meier, P. J., Koepsell, H., et al. Carriers involved in targeting the cytostatic bile acid-cisplatin derivativescis-diammine-chloro-cholylglycinate-platinum (II) and cis-diammine-bisursodeoxycholate-platinum (II) toward liver cells. Mol pharmacol 2002, 61, 853-860. 67.St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B. and Meier, P. J. Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 2001, 204, 1673-1686. 68.Parapini, S., Olliaro, P., Navaratnam, V., Taramelli, D. and Basilico, N. Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays. Antimicrob Agents Chemother 2015, 59, 4046-4052.
|