(54.236.58.220) 您好!臺灣時間:2021/03/05 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐旭峯
研究生(外文):Shiu-Fong Ou
論文名稱:下顎骨切除術後以金屬重建板預防骨折之功效--有限元素分析
論文名稱(外文):Effect of Plate Reinforcement on Fracture Prevention after Mandibulectomy: A Numerical Analysis
指導教授:王東美王東美引用關係林立德林立德引用關係
指導教授(外文):Tong-Mei WangLi-Deh Lin
口試委員:章浩宏呂良正
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:147
中文關鍵詞:下顎骨切除術有限元素分析剩餘下顎骨嵴高度切線設計鈦金屬板強化腓骨皮瓣骨折風險
DOI:10.6342/NTU201904078
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臨床上,邊緣下顎骨切除術與部分下顎骨切除術一直是以10mm的剩餘骨嵴高為分界,但10 mm rule是基於一個體外的乾下顎骨實驗。在邊緣切除術後的下顎骨若要以金屬重建板加強,需要彎折市售的鈦金屬重建板去貼合切除區前後,但鈦金屬重建板的彎折費力且費時、客製化又昂貴,但偶有術後骨折的狀況發生;因此本研究希望利用三維有限元素模型分析下顎骨大範圍邊緣切除術後不同補強設計對術後下顎骨應變分佈的影響:直角切線設計和圓角切線設計、不同設計鈦金屬重建板,以及部分下顎骨切除後用腓骨皮瓣重建後的骨折風險狀況。本實驗將電腦斷層掃描影像輸入ABAQUS 6.14-1建立下顎骨模型,選擇術後所受應變最大的大臼齒區大範圍(48mm)切除區作為實驗對象,在模型上切出四種殘餘下顎骨嵴高(15.0mm、12.5mm、10.0mm、7.5mm)。將下顎骨模型的海綿骨與螺絲以十節點之四面體元素、皮質骨與金屬板以三節點之三角形殼元素網格化之後,以ABAQUS 6.14-1求解;研究分為三個部分:
第一部分探討右大臼齒咬合時,左側大臼齒邊緣大範圍切除在不同切線設計時(直角切線設計與圓角切線設計),所受之最大拉應變與最大壓應變的位置及數值大小,並分別以3000 microstrain與4000 microstrain的應變門檻探討其骨折風險。
第二部分承接第一部分,在同樣的切除區及咬合型態,分析用不同設計之鈦金屬重建板固定時,所受之最大拉應變與最大壓應變的位置及數值大小,並分別以3000 microstrain與4000 microstrain的應變門檻探討其骨折風險。
第三部分探討右大臼齒咬合時,左側大臼齒部分下顎骨切除後用不同厚度腓骨皮瓣移植後,下顎骨最大拉應變與最大壓應變的位置及數值大小,並分別以3000 microstrain與4000 microstrain的應變門檻探討其下顎骨骨折的風險。
結果:(1)圓角的切線設計比起直角的切線設計確實能有效減少應變的集中,且剩餘骨嵴高度越低的組別,能降低的應變越多。(2)圓角的切線設計再搭配上鈦金屬重建板的固定,能有效地減少應變的集中,且剩餘骨嵴高度越低的組別,能降低的應變越多。(3)下顎骨邊緣切除術後以金屬板做強化,可降低但仍然無法完全預防骨折風險。(4)在相同的鈦金屬重建板中,切端用兩隻螺絲或是用三隻螺絲固定,補強的效果並沒有差異。(5) 腓骨皮瓣無法完全避免骨折發生。
本研究顯示:施行過邊緣切除術的臼齒大範圍切除區,在剩餘下顎骨高度不足(小於等於15.0mm)的情況下,圓角的切線設計搭配鈦金屬重建板的固定是必要的,但術後依然存在有骨折風險(骨微損傷)。以骨移植來維持部分下顎骨切除後的下顎骨連續性,依然存在有骨折風險(骨微損傷)。
Compared to segmental mandibulectomy, marginal mandibulectomy keeps the continuity of mandible after tumor resection, and then gets better esthetic and functional outcomes. Clinically, many surgeons follow the “ 10 mm rule” to decide to perform marginal mandibulectomy or segmental mandibulectomy. However, this rule was based on the result of Barttlebort’s in vitro study, performing on a dry mandible with two condyle heads fixed in the cement. Traditionally, reconstruction plates of mandible are bridging two ends of the defect area to reinforce the resected mandible. It takes time and efforts to manually bend a ready-made reconstruction plate to make it fit the contour of the resected mandible, whereas it’s expensive to order a custom-made reconstruction plate. Although the mandibles were bridged with reconstruction plates, there were still some fractures occur after surgery. Therefore, the aim of this study was using numerical analysis to investigate the strain distribution on mandible after extensive marginal mandibulectomy and to investigate the effect of fracture prevention of different cutting angle and different reconstruction plates. And the risk of fracture in segmental mandibulectomy patients repaired with fibular free flap was also investigated.
A basic solid model of mandible was built from CT image and imported into ABAQUS 6.14-1 software. The experimental models were set as left extensive resected area (48mm) under the occlusal scheme of right molar biting. Four groups of residual bone height (7.5, 10.0, 12.5, and 15.0 mm) were investigated. In the mandible model, cancellous bone part and screw parts were meshed with ten-node tetrahedral elements, and cortical bone part and plate parts were meshed with three-node triangular shell elements. The solutions were performed by ABAQUS 6.14-1 software. The study includes three parts.
Part I. Left extensive marginal resected defect under right molar biting. The cutting line angle with higher tensile strain was designed as right angle or curved. The differences of maximum tensile strain and compressive strain in these two designs were evaluated. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the fracture risk of the resected mandibles.
Part II. In the same situation as part I, we investigate the reinforcement effects of three types of reconstruction plates: I shape, L shape, and T shape. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the fracture risk of the resected mandibles.
Part III. The maximum tensile and compressive strain on extensive segmental defect site, which was restored with fibular free flap, was evaluated. Thresholds of 3000 microstrain and 4000 microstrain for tension and compression sites respectively were used to evaluate the effect of fracture prevention.
Results: (1) Comparing to right cutting angle, curved cutting angle can reduce MCS and MTS. While the residual bone height was lesser, the strain became larger on the left extensive defect site during right molar biting. The risk of bone fracture couldn’t be avoided in all groups. (2) Curved cutting angle combined with reconstruction plate reinforcement can decrease MCS and MTS effectively, especially in the thinner residual bone height group. (3) If the residual bone height was limited (less than 15 mm), each plate design performed better than no reinforcement group on MTS and MCS. However, the maximum tensile strain was higher than 3000 microstrain persistently. (4) There is no difference in using two screw fixation or three screw fixation. (5) Segmental mandibulectomy patients restored with fibular free flap still have risk of bone fracture.
The study suggested that after extensive marginal mandibulectomy, the bone fracture risk existed in the residual ridge height less than 15 mm. Curved cutting angle and plate reinforcement is necessary to decrease the strain, but fracture cannot be effectively prevented. The bone fracture risk still existed in segmental mandibulectomy patient repair with fibular free flap.
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
表 xi
圖目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-2-1 下顎骨切除術(Mandibulectomy) 4
1-2-2 下顎骨彎曲(Mandibular flexure) 6
1-2-3 有限元素分析應用於人類下顎骨 8
1-2-4 材料特性(material properties) 9
1-2-5 荷載(load) 11
1-2-6 邊界條件(Boundary condition) 13
1-2-7 驗證(Verification) 14
1-2-8 在有限元素分析中如何定義骨折(Bone fracture) 16
1-3 研究動機與目的 17
第二章 實驗一:切除區切角轉圓角對於應變之影響 19
2-1 目的 19
2-2 實驗主要設備 19
2-3 主模型建構 20
2-3-1 影像輪廓偵測 20
2-3-2 病灶區修補及鏡像 20
2-3-3 曲線整頓 21
2-3-4 直角與圓角切線設計之切除區建立 21
2-3-5 鈦金屬板和螺絲建構 23
2-3-6 給予材料性質 24
2-4 有限元素模型分析 25
2-4-1 荷載 (Load) 26
2-4-2 邊界條件 27
2-4-3 求解 28
2-5 結果 28
2-5-1 直角切角的下顎骨之最大拉應變及最大壓應變 29
2-5-2 圓角切角的下顎骨之最大拉應變及最大壓應變 30
2-6 討論 31
第三章 實驗二:比較不同形狀之金屬重建板對於骨折預防功效 35
3-1 目的 35
3-2 實驗主要設備 35
3-3 主模型的建構 35
3-3-1 切除區建構 36
3-3-2 不同設計之鈦金屬重建板建置 36
3-3-3 給予材料性質 38
3-4 有限元素模型分析 39
3-4-1 荷載 39
3-4-2 邊界條件 40
3-4-3 求解 40
3-5 結果 41
3-5-1 I型鈦金屬重建板的下顎骨之最大拉應變及最大壓應變 41
3-5-2 L型鈦金屬重建板的下顎骨之最大拉應變及最大壓應變 42
3-5-3 T型鈦金屬重建板的下顎骨之最大拉應變及最大壓應變 43
3-6 討論 44
第四章 實驗三:游離皮瓣之皮質骨是否有預防骨折之功效 47
4-1 目的 47
4-2 實驗主要設備 47
4-3 主模型的建構 47
4-3-1 腓骨皮瓣與鈦金屬板建置 47
4-3-2 給予材料性質 48
4-4 有限元素模型分析 49
4-4-1 荷載 49
4-4-2 邊界條件 50
4-4-3 求解 50
4-5 結果 50
4-6 討論 51
第五章 結論與展望 53
5-1 綜合結論 53
5-2 未來研究之展望 55
參考文獻 57

表1. 海綿骨與皮質骨之材料特性 60
表2. 鈦金屬板和螺絲之材料特性、切除區之材料特性 61
表3. 肌肉方向正交分量,由單位向量表示 62
表4. 【表3】之肌肉方向單位向量經空間座標軸旋轉校正後之數值 63
表5. 咀嚼肌之截面積 64
表6. 直角切線設計之各組最大拉應變與最大壓應變值 65
表7. 直角切線設計輔助金屬重建板固定之各組最大拉應變與最大壓應變值 66
表8. 圓角切線設計之各組最大拉應變與最大壓應變值 67
表9. 圓角切線設計輔助金屬重建板固定之各組最大拉應變與最大壓應變值 68
表10. 在直角切線設計下鈦金屬固定各組最大拉應變和最大壓應變減少之數值 69
表11. 圓角切線設計比直角切線設計各組最大拉應變和最大壓應變減少之數值 70
表12. 在鈦金屬重建板固定下圓角切線比直角切線各組最大拉應變和最大壓應變減少之數值 71
表13. 圓角切線輔助鈦金屬重建板固定比直角切線各組最大拉應變和最大壓應變減少之數值 72
表14. 不同設計金屬重建板與螺絲數目之各組最大拉應變 73
表15. 不同設計金屬重建板與螺絲數目之各組最大壓應變 74
表16. 不同設計金屬重建板與螺絲數目各組最大拉應變減少之數值 75
表17. 不同腓骨皮瓣厚度之各組最大拉應變與最大壓應變值 76
表18. 不同腓骨皮瓣厚度輔助鈦金屬重建板固定之各組最大拉應變與最大壓應變值 77
圖目錄

圖一. 匯入ABAQUS/CAE 6.14-1軟體的初始下顎骨模型 78
圖二. 切除區建構 79
圖三. 直角切線設計之邊緣下顎骨模型 80
圖四. 游離的切除區與圓角製作 81
圖五. 圓角切線設計之邊緣下顎骨切除模型 82
圖六. 鈦金屬重建板與螺絲的建置 83
圖七. 材料方向 84
圖八. 網格劃分圖 — 直角切線設計之下顎骨模型 85
圖九. 網格劃分圖 — 圓角切線設計之剩餘骨嵴高15 MM下顎骨模型 86
圖十. 網格劃分圖 — 圓角切線設計之剩餘骨嵴高12.5 MM下顎骨模型 87
圖十一. 網格劃分圖 — 圓角切線設計之剩餘骨嵴高10 MM下顎骨模型 88
圖十二. 網格劃分圖 — 圓角切線設計之剩餘骨嵴高7.5 MM下顎骨模型 89
圖十三. 咀嚼肌附著位置及荷載方向示意圖 90
圖十四. 咀嚼肌附著位置及荷載方向 91
圖十五. 模型之下顎平面與ABAQUS/CAE 6.14-1軟體的空間座標軸的夾角 92
圖十六. 邊界條件 — 右側大臼齒咬合時(RIGHT MOLAR BITING) 93
圖十七. 直角切線設計 — 各組應變集中狀況 94
圖十八. 直角切線設計 — 各組最大拉應變及最大壓應變數值 96
圖十九. 直角切線設計且用鈦金屬重建板補強 — 各組應變集中狀況 97
圖二十. 直角切線設計且用鈦金屬重建板補強 — 各組最大拉應變及最大壓應變數值 99
圖二十一. 圓角切線設計 — 各組應變集中狀況 100
圖二十二. 圓角切線設計 — 各組最大拉應變及最大壓應變數值 102
圖二十三. 圓角切線設計且用鈦金屬重建板補強—各組應變集中狀況 103
圖二十四. 圓角切線設計且用鈦金屬重建板補強—各組最大拉應變及最大壓應變數值 105
圖二十五. 不同切線設計且有無輔以鈦金屬重建板補強—各組最大拉應變數值 106
圖二十六. 不同切線設計且有無輔以鈦金屬重建板補強—各組最大壓應變數值 107
圖二十七. T型鈦金屬重建板、螺絲與下顎骨模型建置 108
圖二十八. I型鈦金屬重建板設定 109
圖二十九. L型鈦金屬重建板設定 110
圖三十. T型鈦金屬板設定 111
圖三十一. 用I型鈦金屬板兩顆螺絲固定 — 各組應變集中狀況 112
圖三十二. 用I型鈦金屬板兩顆螺絲固定 — 各組最大拉應變及最大壓應變數值 114
圖三十三. 用I型鈦金屬板三顆螺絲固定 — 各組應變集中狀況 115
圖三十四. 用I型鈦金屬板三顆螺絲固定 — 各組最大拉應變及最大壓應變數值 117
圖三十五. 用L型鈦金屬板兩顆螺絲固定 — 各組應變集中狀況 118
圖三十六. 用L型鈦金屬板兩顆螺絲固定 — 各組最大拉應變及最大壓應變數值 120
圖三十七. 用L型鈦金屬板三顆螺絲固定 — 各組應變集中狀況 121
圖三十八. 用L型鈦金屬板三顆螺絲固定 — 各組最大拉應變及最大壓應變數值 123
圖三十九. 用T型鈦金屬板兩顆螺絲固定 — 各組應變集中狀況 124
圖四十. 用T型鈦金屬板兩顆螺絲固定 — 各組最大拉應變及最大壓應變數值 126
圖四十一. 用T型鈦金屬板三顆螺絲固定 — 各組應變集中狀況 127
圖四十二. 用T型鈦金屬板三顆螺絲固定 — 各組最大拉應變及最大壓應變數值 129
圖四十三. 剩餘骨嵴高15MM組—各金屬重建板補強設計最大拉應變及最大壓應變數值 130
圖四十四. 剩餘骨嵴高12.5MM組—各金屬重建板補強設計最大拉應變及最大壓應變數值
圖四十五. 剩餘骨嵴高10MM組—各金屬重建板補強設計最大拉應變及最大壓應變數值 132
圖四十六. 剩餘骨嵴高7.5 MM組 — 各金屬重建板設計最大拉應變及最大壓應變數值 133
圖四十七. 不同鈦金屬重建板補強 — 各組最大拉應變數值 134
圖四十八. 不同鈦金屬重建板補強 — 各組最大壓應變數值 135
圖四十九. 厚度15MM的腓骨皮瓣 136
圖五十. 厚度12.5 MM腓骨皮瓣 137
圖五十一. 厚度10 MM腓骨皮瓣 138
圖五十二. 腓骨皮瓣模型之實心元件網格化 139
圖五十三. 腓骨皮瓣模型之殼元件網格化 140
圖五十四. 各厚度腓骨皮瓣 — 應變集中狀況 141
圖五十五. 各厚度腓骨皮瓣 — 最大拉應變及最大壓應變數值 143
圖五十六. 各厚度腓骨皮瓣輔助金屬重建板固定 — 應變集中狀況 144
圖五十七. 各厚度腓骨皮瓣輔助金屬重建板固定—最大拉應變及最大壓應變數值 146
[1]衛生福利部(2016/08)。104年國人死因統計結果。取自http://www.mohw.gov.tw/news/572256044
[2]Miloro M, Ghali G, Larsen P, Waite P. Peterson''s Principles of Oral and Maxillofacial Surgery. 3rd ed: Pmph usa; 2011. P617-58, 783-802
[3]Jereczek-Fossa BA, Orecchia R. Radiotherapy-induced mandibular bone complications. Cancer Treat Rev 2002;28:65-74.
[4]Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 2014; 72: 1938–56.
[5]Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005;63:1567-75.
[6]Barttelbort SW, Ariyan S. Mandible preservation with oral cavity carcinoma: rim mandibulectomy versus sagittal mandibulectomy. Am J Surg 1993;166:411-5.
[7]Qiu Y, Lin L, Shi B, Zhu X. Does different mandibulectomy (marginal vs segmental) affect the prognosis in patients with oral squamous cell carcinoma?. J Oral Maxillofac Surg 2018 May;76:1117-22.
[8]Koshy JC, Feldman EM, Chike-Obi CJ, Bullocks JM. Pearls of mandibular trauma management. Semin Plast Surg 2010;24:357-74. 

[9]黃懿萱(2016):下顎骨邊緣切除手術後之骨折預防功效---有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文
[10]Velasco-Ortega, E., et al., In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res, 2010. 702(1):17-23.
[11]Yadav RR, Yadav AR, Dhund PV. Fracture mandible. New Delhi: Jaypee Brothers; 2012. 

[12]Wang TM, Chang HH, Ho Y, Lin LD. Screw hole-positioning guide and plate-positioning guide: A novel method to assist mandibular reconstruction. J Dent Sci 2012;7:301-5. 

[13]Dempster WT. The adaptive chin. By E. Lloyd DuBrul and Harry Sicher. Am J Phys Anthropol 1956;14:119-20
[14]Hylander WL. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol 1984;64:1-46. 

[15]Mosby’s medical dictionary. 8th ed. St. Louis: Mosby Elsevier; 2009 

[16]Bowman A. Flexion of the mandible: Indiana University, School of Dentistry, Indianapolis; 1970. 

[17]Burch JG, Borchers G. Method for study of mandibular arch width change. J Dent Res 1970;49:463. 

[18]Chen DC, Lai YL, Chi LY, Lee SY. Contributing factors of mandibular deformation during mouth opening. J Dent 2000;28:583-8.
[19]Abdel-Latif HH, Hobkirk JA, Kelleway JP. Functional mandibular deformation in edentulous subjects treated with dental implants. Int J Prosthodont 2000;13:513-9.

[20]El-Sheikh AM, Abdel-Latif HH, Howell PG, Hobkirk JA. Midline mandibular deformation during nonmasticatory functional movements in edentulous subjects with dental implants. Int J Oral Maxillofac Implants 2007;22:243-8.
[21]Regli CP, Kelly EK. The phenomenon of decreased mandibular arch width in opening movements. J Prosthet Dent 1967;17:49-53. 

[22]Canabarro Sde A, Shinkai RS. Medial mandibular flexure and maximum occlusal force in dentate adults. Int J Prosthodont 2006;19:177-82.
[23]Ying T, Dong Mei W, Tong J, Cheng Tao W, Chen Ping Z. Three-dimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. Journal of Cranio-Maxillofacial Surgery 2006; 34:290-8.

[24]Murakami K, Sugiura T, Yamamoto K, Kawakami M, Kang YB, Tsutsumi S, Kirita T. Biomechanical analysis of the strength of the mandible after marginal resection. Oral Maxillofac Surg 2011 Jun;69:1798-806
[25]Kazuhiro M, Kazuhiko Y, Motokatsu Ti, Tsutomu S, Sadami T, and Tadaaki K. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. Journal of Oral and Maxillofacial Surgery 2014; 72: 833.e1-18
[26]O''Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57. 

[27]Chung DH, Buessem WR. The elastic anisotropy of crystals in: Vahldiek FW MS, editor. Anisotropy in Single-Crystal Refractory Compounds. New York: Plenum Press 1968. p. 217-45. 

[28]Katz JL, Meunier A. The elastic anisotropy of bone. J Biomech 1987;20:1063-70.
[29]Korioth TW, Romilly DP, Hannam AG. Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol 1992;88:69-96. 

[30]Baron P, Debussy T. A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol 1979;24:547-53. 

[31]Nelson GJ. Three dimensional computer modeling of human mandibular biomechanics [M.Sc.]. Vancouver: University of British Columbia; 1986 

[32]Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res 1994;73:56-66. 

[33]Curtis, D.A., et al., A comparison of masticatory function in patients with or without reconstruction of the mandible. Head Neck, 1997. 19(4): 287-96.
[34]Al-Sukhun J, Kelleway J. Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants. Int J Oral Maxillofac Implants 2007;22:455-66. 

[35]Murakami K, Yamamoto K, Tsuyuki M, Sugiura T, Tsutsumi S, Kirita T. Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg 2014;72:833 e1-18. 

[36]Lovald ST, Khraishi T, Wagner J, Baack B, Kelly J, Wood J. Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. J Biomech Eng 2006;128:654-62. 

[37]Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987;2:73-85. 

[38]Frost HM. Bone''s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101. 

[39]Frost HM. Perspectives: bone''s mechanical usage windows. Bone Miner 1992;19:257-71. 

[40]Biewener AA. Safety factors in bone strength. Calcif Tissue Int 1993;53:S68-74.
[41]Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 1996;29:69-79. 

[42]陳孝宇(2018):下顎骨大範圍邊緣切除術後之骨折預防效能--有限元素分析。國立臺灣大學牙醫專業學院臨床牙醫學研究所學位論文
[43]Al-Sukhun J. Modelling of mandibular functional deformation [Ph.D.]. London: University College London (University of London); 2003.
[44]Koole P, de Jongh HJ, Boering G. A comparative study of electromyograms of the masseter, temporalis, and anterior digastric muscles obtained by surface and intramuscular electrodes: raw-EMG. Cranio 1991;9:228-40.
[45]Woelfel JB, Scheid RC. Dental Anatomy: Its Relevance to Dentistry. Sixth ed: LWW; 2002. p97

[46]Udupikrishna J, Manju K. Comparison of stability of fracture segments in mandible fracture treated with different designs of mini-plates using FEM analysis. J. Maxillofac. Oral Surg 2014;13:310-19.
[47]Ertem SY, Uckan S, Ozden UA. The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis. J Craniomaxillofac Surg 2013;41:54-8.
[48]Curtis DA, Plesh O, Hannam AG, Sharma A, Curtis TA. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J Prosthet Dent 1999;81:167-73.
[49]Nikkoh P.Munoz, Adrian F.Fernando, Samatha S. Castaneda. Fibular dimensions for mandibular reconstruction among Filipinos. Philippine J Otolaryngology-Head and Neck Surgery 2017;32-1:23-6
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔