|
1.Beaumont J, Chesterman J, Kellett M, Durey K. Gingival overgrowth: Part 1: aetiology and clinical diagnosis. British dental journal, 222: 85-91, 2017. 2.Uzel MI, Kantarci A, Hong HH, et al. Connective tissue growth factor in drug-induced gingival overgrowth. Journal of periodontology, 72: 921-931, 2001. 3.Shimada T, Takemiya T, Sugiura H, Yamagata K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators of inflammation, 2014: 901902, 2014. 4.Trackman PC, Kantarci A. Molecular and clinical aspects of drug-induced gingival overgrowth. Journal of dental research, 94: 540-546, 2015. 5.Barclay S, Thomason JM, Idle JR, Seymour RA. The incidence and severity of nifedipine-induced gingival overgrowth. J Clin Periodontol, 19: 311-314, 1992. 6.Hassell TM, Hefti AF. Drug-induced gingival overgrowth: old problem, new problem. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists, 2: 103-137, 1991. 7.Lucas RM, Howell LP, Wall BA. Nifedipine-induced gingival hyperplasia. A histochemical and ultrastructural study. Journal of periodontology, 56: 211-215, 1985. 8.Seymour RA, Thomason JM, Ellis JS. The pathogenesis of drug-induced gingival overgrowth. J Clin Periodontol, 23: 165-175, 1996. 9.Wynn TA. Cellular and molecular mechanisms of fibrosis. The Journal of pathology, 214: 199-210, 2008. 10.Kiwanuka E, Junker JP, Eriksson E. Transforming growth factor beta1 regulates the expression of CCN2 in human keratinocytes via Smad-ERK signalling. International wound journal, 14: 1006-1018, 2017. 11.Ilgenli T, Atilla G, Baylas H. Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. Journal of periodontology, 70: 967-972, 1999. 12.Gawron K, Lazarz-Bartyzel K, Potempa J, Chomyszyn-Gajewska M. Gingival fibromatosis: clinical, molecular and therapeutic issues. Orphanet journal of rare diseases, 11: 9, 2016. 13.Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents and actions, 6: 468-475, 1976. 14.Seymour RA, Jacobs DJ. Cyclosporin and the gingival tissues. J Clin Periodontol, 19: 1-11, 1992. 15.Cotrim P, Martelli-Junior H, Graner E, Sauk JJ, Coletta RD. Cyclosporin A induces proliferation in human gingival fibroblasts via induction of transforming growth factor-beta1. Journal of periodontology, 74: 1625-1633, 2003. 16.Sume SS, Kantarci A, Lee A, Hasturk H, Trackman PC. Epithelial to mesenchymal transition in gingival overgrowth. The American journal of pathology, 177: 208-218, 2010. 17.Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 18: 816-827, 2004. 18.Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nature reviews Molecular cell biology, 8: 970-982, 2007. 19.Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. The New England journal of medicine, 342: 1350-1358, 2000. 20.Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113: 685-700, 2003. 21.Weng HL, Ciuclan L, Liu Y, et al. Profibrogenic transforming growth factor-beta/activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes. Hepatology (Baltimore, Md), 46: 1257-1270, 2007. 22.Remst DF, Blaney Davidson EN, Vitters EL, Bank RA, van den Berg WB, van der Kraan PM. TGF-ss induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell and tissue research, 355: 163-171, 2014. 23.Meurer SK, Esser M, Tihaa L, Weiskirchen R. BMP-7/TGF-beta1 signalling in myoblasts: components involved in signalling and BMP-7-dependent blockage of TGF-beta-mediated CTGF expression. European journal of cell biology, 91: 450-463, 2012. 24.Van Geest RJ, Klaassen I, Vogels IM, Van Noorden CJ, Schlingemann RO. Differential TGF-{beta} signaling in retinal vascular cells: a role in diabetic retinopathy? Investigative ophthalmology & visual science, 51: 1857-1865, 2010. 25.Thompson K, Hamilton DW, Leask A. ALK5 inhibition blocks TGFss-induced CCN2 expression in gingival fibroblasts. Journal of dental research, 89: 1450-1454, 2010. 26.de Gouville AC, Boullay V, Krysa G, et al. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. British journal of pharmacology, 145: 166-177, 2005. 27.Higashiyama H, Yoshimoto D, Kaise T, et al. Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Experimental and molecular pathology, 83: 39-46, 2007. 28.Petersen M, Thorikay M, Deckers M, et al. Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney international, 73: 705-715, 2008. 29.Bonniaud P, Margetts PJ, Kolb M, et al. Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. American journal of respiratory and critical care medicine, 171: 889-898, 2005. 30.Fu K, Corbley MJ, Sun L, et al. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, thrombosis, and vascular biology, 28: 665-671, 2008. 31.Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. The Journal of biological chemistry, 276: 10594-10601, 2001. 32.Flanders KC. Smad3 as a mediator of the fibrotic response. International journal of experimental pathology, 85: 47-64, 2004. 33.Latella G, Vetuschi A, Sferra R, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. European journal of clinical investigation, 39: 145-156, 2009. 34.Wu KJ, Huang GF, Chen CH, Chang HH, Deng YT. Cyclosporine A induces connective tissue growth factor expression in human gingival fibroblasts: suppression by epigallocatechin-3-gallate. Journal of the Formosan Medical Association = Taiwan yi zhi, 113: 828-832, 2014. 35.Kim SS, Jackson-Boeters L, Darling MR, Rieder MJ, Hamilton DW. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. Journal of dental research, 92: 1022-1028, 2013. 36.Wang CY, Deng YT, Huang SY, Liu CM, Chang HH, Wong MY. Epigallocatechin-3-gallate inhibits lysophosphatidic acid-stimulated connective tissue growth factor via JNK and Smad3 suppression in human gingival fibroblasts. Journal of the Formosan Medical Association = Taiwan yi zhi, 113: 50-55, 2014. 37.Leivonen SK, Hakkinen L, Liu D, Kahari VM. Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-beta-induced expression of connective tissue growth factor in human fibroblasts. The Journal of investigative dermatology, 124: 1162-1169, 2005. 38.Phanish MK, Wahab NA, Hendry BM, Dockrell ME. TGF-beta1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signalling. Nephron Experimental nephrology, 100: e156-165, 2005. 39.Black SA, Jr., Palamakumbura AH, Stan M, Trackman PC. Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase. The Journal of biological chemistry, 282: 15416-15429, 2007. 40.Black SA, Jr., Trackman PC. Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression. The Journal of biological chemistry, 283: 10835-10847, 2008. 41.Chang Y, Wu XY. JNK1/2 siRNA inhibits transforming-growth factor-beta1-induced connective tissue growth factor expression and fibrotic function in THSFs. Molecular and cellular biochemistry, 335: 83-89, 2010. 42.Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox biology, 2: 267-272, 2014. 43.Kuru L, Yilmaz S, Kuru B, Kose KN, Noyan U. Expression of growth factors in the gingival crevice fluid of patients with phenytoin-induced gingival enlargement. Archives of oral biology, 49: 945-950, 2004. 44.Subramani T, Rathnavelu V, Alitheen NB. The possible potential therapeutic targets for drug induced gingival overgrowth. Mediators of inflammation, 2013: 639468, 2013. 45.Coletta RD, Graner E. Hereditary gingival fibromatosis: a systematic review. Journal of periodontology, 77: 753-764, 2006. 46.Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Investigative ophthalmology & visual science, 44: 3394-3401, 2003. 47.Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Frontiers in pharmacology, 6: 87, 2015. 48.Yamada M, Kuwano K, Maeyama T, et al. Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. Journal of clinical pathology, 60: 916-920, 2007. 49.Kondo T, Takemura G, Kosai K, et al. Application of an adenoviral vector encoding soluble transforming growth factor-beta type II receptor to the treatment of diabetic nephropathy in mice. Clinical and experimental pharmacology & physiology, 35: 1288-1293, 2008. 50.Gagliardini E, Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine & growth factor reviews, 17: 89-96, 2006. 51.Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology (Baltimore, Md), 32: 247-255, 2000. 52.Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. The Journal of clinical investigation, 120: 3520-3529, 2010. 53.Yamamoto T, Takagawa S, Katayama I, Nishioka K. Anti-sclerotic effect of transforming growth factor-beta antibody in a mouse model of bleomycin-induced scleroderma. Clinical immunology (Orlando, Fla), 92: 6-13, 1999. 54.Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis and rheumatism, 56: 323-333, 2007. 55.Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nature medicine, 16: 1009-1017, 2010. 56.Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, et al. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. The EMBO journal, 24: 3446-3458, 2005. 57.Bechtel W, Zeisberg M. Twist: a new link from hypoxia to fibrosis. Kidney international, 75: 1255-1256, 2009. 58.Wei Y, Kim TJ, Peng DH, et al. Fibroblast-specific inhibition of TGF-beta1 signaling attenuates lung and tumor fibrosis. The Journal of clinical investigation, 127: 3675-3688, 2017.
|