(3.215.180.226) 您好!臺灣時間:2021/03/06 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李士捷
研究生(外文):Shih-Chieh Lee
論文名稱:發展思覺失調症患者篩檢暨評估之多向度臉部情緒辨識測驗
論文名稱(外文):Development of a screening and measuring test of multidimensional facial emotion recognition in patients with schizophrenia
指導教授:謝清麟謝清麟引用關係
指導教授(外文):Ching-Lin Hsieh
口試委員:陳建中劉震鐘施慶麟黃小玲吳建德
口試委員(外文):Chien-Chung ChenChen-Chung LiuChing-Lin ShihSheau-Ling HuangChien-Te Wu
口試日期:2019-05-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:職能治療研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:思覺失調症臉部情緒辨識電腦化分類測驗電腦適性測驗心理計量特性
DOI:10.6342/NTU201900900
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:臉部情緒辨識 (facial emotion recognition, FER) 是人們藉由觀察他人臉部表情以推論其情緒狀態之能力,通常包含7種情緒(快樂、悲傷、生氣、厭惡、害怕、驚訝及平靜)。思覺失調症患者常有中至重度之FER缺損,影響其精神症狀、社會功能及生活品質。然而,常用FER評估工具有4大缺失(內容向度不完整、計分指標不詳盡、未校正受試者性別之影響及心理計量特性大多未知),嚴重限制結果之解讀。此外,FER向度繁多,且信度及效率不易兼顧,故內容完整且精準之FER測驗,很可能題數過多,影響可行性。結合篩檢與詳細評估之測驗方式,可先快速辨識功能缺損之向度,再準確估計缺損嚴重度,或可改善前述信度與效率難以兼具之瓶頸。
目的:發展適用於思覺失調症患者篩檢暨評估之多向度臉部情緒辨識測驗 (Screening and Measuring Test of Multidimensional FER, SMART-FER),並驗證其再測信度、練習效應、建構效度及已知族群效度。
方法:分為二個階段:(一)以3步驟發展SMART-FER:(1) 發展題庫:先自「專業表演者臉部表情常模資料」挑選7種情緒之照片做為候選題,再施測於患者及健康成人。研究者於剔除multidimensional Rasch model適配度不佳之題目,並考量性別differential item functioning (DIF) 後,剩餘題目組成最終版題庫。(2) 結合篩檢與詳細評估:藉由結合效能較佳之篩檢 (computerized classification testing, CCT) 及詳細評估測驗方法 (computerized adaptive testing, CAT),並比較不同終止條件下之篩檢效能(如正確率)、信度及施測效率,以挑選兼具高篩檢效能、高信度及高效率之組合,做為最終版SMART-FER;(3) 建構SMART-FER之施測介面。(二)驗證SMART-FER之心理計量特性:使用參與前一階段,以及願意接受再測(間隔4週後)且症狀穩定之患者資料,模擬分析SMART-FER之再測信度、練習效應及已知族群效度。
研究結果:第一階段共選168題候選題(7種情緒,各24題),並施測於351位患者及101位健康成人。於刪除3題適配度不佳之題目後,剩餘165題適配度良好 (infit and outfit mean square = 0.13–1.36),支持其個別單向度,故納入最終版題庫。其中39題具嚴重性別DIF,故藉由因應受試者性別採用不同題目難度之方式,以校正其影響。由於高篩檢效能、高信度及高施測效率難以兼具,研究者改在特定篩檢效能下,挑選二種次佳之終止條件(快速模式及精準模式),以滿足使用者之需求。快速模式(「各向度篩檢7題」,搭配「信度 ≥ 0.70」或「多施測一題之信度增加量 < 0.001」之終止條件)之SMART-FER僅需68題(預計10分鐘),即具備可接受之篩檢效能(正確率 = 85.5%)及信度 (0.68–0.74)。精準模式(「各向度篩檢13題」,搭配「信度 ≥ 0.90」或「多施測一題之信度增加量 < 0.005」之終止條件),平均施測110題(約17分鐘),可達成良好之篩檢效能(正確率 = 91.8%)以及與完整題庫相似之信度(0.70–0.84 vs. 0.72–0.88)。共82位症狀穩定之患者參與再測評估。二種施測模式之SMART-FER皆具可接受至良好之再測信度 (intraclass correlation coefficient = 0.63–0.75 and 0.66–0.81)、已知族群效度(Cohen’s d = -0.48至-1.51及-0.49至-1.59)、建構效度(測驗結果與完整題庫高度相關,Pearson''s r = 0.91至0.97),與微小至可忽略之練習效應(Cohen’s d = -0.15至0.23及-0.20至0.21)。
結論:初步結果顯示SMART-FER可提供完整(7種情緒且有個別向度分數)、有效(符合多向度模型,並能區分患者與健康人FER差異)且不受性別DIF影響之評估。此外,SMART-FER可彈性調整施測模式,分別強化測驗信度(精準模式)或效率(快速模式),以滿足不同使用者之需求。因此,SMART-FER具潛力廣泛應用於臨床及研究場域,以提升評估效能。
Background: Facial emotion recognition (FER) is the ability to identify others’ emotion status through their facial expressions, which contain identification of the 7 emotions (happiness, sadness, anger, disgust, fear, surprise, and calm). Patients with schizophrenia tend to have moderate to severe deficits of FER that affect their psychotic symptoms, social function, and quality of life. However, the commonly used FER measures have 4 flaws (i.e., incomprehensiveness, lack of score for each domain, possible biases due to examinees’ sex, and unknown psychometric properties), which severely limits their utility. Given the numerous domains of FER and the challenge of achieving high reliability and efficiency simultaneously, combining screening and measuring tests appears a promising solution.
Purposes: The purpose of this study was to develop a screening and measuring test of multidimensional FER (SMART-FER). We examined its test-retest reliability, practice effect, ceiling and floor effects, construct validity, and known-groups validity.
Methods: This study contained two phases. First, the SMART-FER was developed through 3 steps. (1) Forming the FER item bank. We first selected the candidate items (i.e., pictures of professional performers’ facial expressions across 7 emotions) from a database and validated them on patients with schizophrenia and healthy adults. The misfit items to the multidimensional Rasch model were removed. The items with differential item functioning (DIF) of sex were examined and considered. After that, the remaining items were used to form the item bank. (2) Combining screening and measuring tests: We first incorporated the two advanced testings: the computerized classification testing (CCT) and computerized adaptive testing (CAT). Then, simulations were performed to compare the accuracy, reliability, and efficiency of both tests with different combinations of stopping rules. We deemed the SMART-FER to be the test that achieved high accuracy, reliability, and efficiency simultaneously. (3) Constructing the administration system of the SMART-FER. Second, we examined the test-retest reliability and known-groups validity of the SMART-FER in patients with schizophrenia who had stable clinical severities and completed the FER item bank twice with a 4-week interval.
Results: In phase 1, we selected 168 items (24 for each domain) as candidate items and tested these items on 351 patients with schizophrenia and 101 healthy adults. After removing 3 misfit items and adjusting item difficulties for the 39 DIF items, a total of 165 items were included in the FER item bank. All items showed good model fits (infit and outfit mean square = 0.13 to 1.36), supporting the unidimensionality of each domain. Given that high accuracy, reliability and efficient could not be achieved simultaneously, two alternative sets of rules (the “most reliable set” and the “most efficient set”) with acceptable accuracy were determined for prospective users. With the most efficient set (screening 7 items for each domain plus CAT with “reliability ≥ 0.70” or “limited reliability increase [LRI] < 0.001”), the SMART-FER needed 65 items (taking about 10 minutes) to achieve acceptable reliability (0.68–0.74) and accuracy (85.5%). Using the most reliable set (screening 17 items for each domain plus CAT with “reliability ≥ 0.90” or “LRI < 0.005”, the SMART-FER adopted about 110 items (17 minutes) to provide high accuracy (92.8%) and similar reliabilities to the FER item bank (0.70–0.84 vs. 0.72–0.88). In phase 2, 82 patients with stable symptom severities who completed the FER item bank twice. In general, with both assessment modes, the SMART-FER showed acceptable to good test-retest reliability (intraclass correlation coefficient = 0.63–0.75 and 0.66–0.81), trivial practice effect (Cohen’s d = -0.15 to 0.23 and -0.20 to 0.21), good construct validity (Pearson’s r with the FER item bank = 0.91 to 0.99), and satisfactory known-groups validity (Cohen’s d = -0.48 to -1.51 and -0.49 to -1.59).
Conclusions: Our findings suggest that the SMART-FER provides comprehensive, valid, and unbiased assessments of patients’ FER levels. In addition, the stopping rules of the SMART-FER can be flexibly adapted to optimize the reliability or efficiency of assessments depending on users’ needs. Thus, it shows great potential to be applied in both clinical and research settings to improve the efficacy of assessments.
口試委員會審定書 i
中文摘要 ii
英文摘要 iv
圖目錄 ix
表目錄 x
第一章 臉部情緒辨識 (facial emotion recognition, FER) 簡介 1
第一節 FER之定義 1
第二節 FER之相關理論 2
第三節 FER之影響因子 5
第二章 思覺失調症之FER缺損 7
第一節 思覺失調症簡介 7
第二節 思覺失調症患者之FER缺損 8
第三章 FER測驗之介紹與評析 11
第一節 良好FER測驗之主要特性 11
第二節 常用於思覺失調症患者之FER測驗 15
第三節 常用FER測驗之缺點及影響 18
第四章 發展「結合篩檢測驗與詳細評估」及「多向度羅序模型」之組合式FER測驗 20
第一節 篩檢測驗 (screening test) 20
第二節 詳細評估 (in-depth assessment) 20
第三節 結合篩檢測驗與詳細評估之組合式測驗 21
第四節 多向度羅序模型 (multidimensional Rasch model) 21
第五節 電腦化分類測驗 (computerized classification testing, CCT) 24
第六節 電腦適性測驗 (computerized adaptive testing, CAT) 25
第七節 結合CCT及CAT之組合式測驗 26
第五章 研究目的 28
第六章 研究方法 29
第一節 階段一:發展SMART-FER 29
第二節 階段二:驗證SMART-FER之心理計量特性 42
第七章 研究結果 44
第一節 階段一:發展SMART-FER 44
第二節 階段二:驗證SMART-FER之心理計量特性 48
第八章 討論 50
第九章 結論 60
參考文獻 62
圖一、結合篩檢與詳細評估之組合式測驗示意圖 75
圖二、CCT施測流程示意圖 76
圖三、CAT施測流程示意圖 77
圖四、階段式及平行式組合測驗之概念圖 78
圖五、SMART-FER之發展及驗證流程 79
圖六、SMART-FER之施測介面與流程 80
圖七、平靜向度之題目難度與受試者能力之相對關係 81
圖八、快樂向度之題目難度與受試者能力之相對關係 82
圖九、悲傷向度之題目難度與受試者能力之相對關係 83
圖十、生氣向度之題目難度與受試者能力之相對關係 84
圖十一、厭惡向度之題目難度與受試者能力之相對關係 85
圖十二、害怕向度之題目難度與受試者能力之相對關係 86
圖十三、驚訝向度之題目難度與受試者能力之相對關係 87
表一、二種常用FER模型之重點整理 88
表二、常用之FER評估工具與缺點 90
表三、檢驗篩檢效能之指標與其標準 91
表四、受試者之人口學及臨床資料 92
表五、SMART-FER題庫之難度及模型適配度 93
表六、思覺失調症患者於各向度能力狀態之人數比率 100
表七、FER向度間之相關性 (Pearson''s r) 101
表八、階段式組合測驗之篩檢效能 102
表九、平行式組合測驗之篩檢效能 104
表十、SMART-FER之羅序信度及施測效率 105
表十一、SMART-FER之再測信度及練習效應 106
表十二、SMART-FER之已知族群效度 107
Addington, J., Saeedi, H., & Addington, D. (2006). Facial affect recognition: a mediator between cognitive and social functioning in psychosis? Schizophrenia Research, 85, 142-150.
American Psychiatric Association. (2014). Desk Reference to the Diagnostic Criteria From DSM-5. Washington, DC: American Psychiatric Association.
Andric Petrovic, S., Jerotic, S., Mihaljevic, M., Pavlovic, Z., Ristic, I., Soldatovic, I., & Maric, N. P. (2019). Sex differences in facial emotion recognition in health and psychotic disorders. Cognitive Neuropsychiatry, 24, 108-122.
Balogh, N., Egerhazi, A., Berecz, R., & Csukly, G. (2014). Investigating the state-like and trait-like characters of social cognition in schizophrenia: a short term follow-up study. Schizophrenia Research, 159, 499-505.
Barkl, S. J., Lah, S., Harris, A. W., & Williams, L. M. (2014). Facial emotion identification in early-onset and first-episode psychosis: a systematic review with meta-analysis. Schizophrenia Research, 159, 62-69.
Behere, R. V. (2015). Facial emotion recognition deficits: The new face of schizophrenia. Indian Journal of Psychiatry, 57, 229-235.
Bolte, S., & Poustka, F. (2003). The recognition of facial affect in autistic and schizophrenic subjects and their first-degree relatives. Psychological Medicine, 33, 907-915.
Bond, A. (2018). However Did We Survive? Archives of Physical Medicine and Rehabilitation, 70, 182-187.
Bowers, D., Blonder, L. X., Feinberg, T., & Heilman, K. M. (1991). Differential impact of right and left hemisphere lesions on facial emotion and object imagery. Brain, 114, 2593-2609.
Bowers, D., Blonder, L. X., & Heilman, K. M. (1998). Florida affect battery. Gainesville, FL: Center for Neuropsychological Studies, University of Florida.
Brainin, M., Tuomilehto, J., Heiss, W. D., Bornstein, N. M., Bath, P. M., Teuschl, Y., . . . Post Stroke Cognition Study Group. (2015). Post-stroke cognitive decline: an update and perspectives for clinical research. European Journal of Neurology, 22, 229-238, e213-226.
Brekke, J., Kay, D. D., Lee, K. S., & Green, M. F. (2005). Biosocial pathways to functional outcome in schizophrenia. Schizophrenia Research, 80, 213-225.
Briggs, D. C., & Wilson, M. (2003). An introduction to multidimensional measurement using Rasch models. Journal of Applied Measurement, 4, 87-100.
Bryson, G., Bell, M., & Lysaker, P. (1997). Affect recognition in schizophrenia: a function of global impairment or a specific cognitive deficit. Psychiatry Research, 71, 105-113.
Buck, B. E., Healey, K. M., Gagen, E. C., Roberts, D. L., & Penn, D. L. (2016). Social cognition in schizophrenia: factor structure, clinical and functional correlates. Journal of Mental Health, 25, 330-337.
Busner, J., & Targum, S. D. (2007). The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry (Edgmont), 4, 28-37.
Calvo, M. G., & Nummenmaa, L. (2016). Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition & Emotion, 30, 1081-1106.
Chen, C. C., Cho, S. L., & Tseng, R. Y. (2013). Taiwan Corpora of Chinese Emotions and Relevant Psychophysiological Data–Behavioral Evaluation Norm for Facial Expressions of Professional Performer. Chinese Journal of Physiology, 55, 439-454.
Chien, I. C., Chou, Y. J., Lin, C. H., Bih, S. H., Chou, P., & Chang, H. J. (2004). Prevalence and incidence of schizophrenia among national health insurance enrollees in Taiwan, 1996-2001. Psychiatry and Clinical Neurosciences, 58, 611-618.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.
Cook, D. A., & Beckman, T. J. (2006). Current concepts in validity and reliability for psychometric instruments: theory and application. American Journal of Medicine, 119, 166 e167-116.
Cotter, J., Granger, K., Backx, R., Hobbs, M., Looi, C. Y., & Barnett, J. H. (2018). Social cognitive dysfunction as a clinical marker: A systematic review of meta-analyses across 30 clinical conditions. Neuroscience and Biobehavioral Reviews, 84, 92-99.
de Koning, I., van Kooten, F., & Koudstaal, P. J. (1998). Value of screening instruments in the diagnosis of post-stroke dementia. Haemostasis, 28, 158-166.
DeLisa, J. A., Gans, B. M., & Walsh, N. E. (2005). Physical medicine and rehabilitation: principles and practice (Vol. 1). Philadelphia, PA: Lippincott Williams & Wilkins.
Delvecchio, G., Sugranyes, G., & Frangou, S. (2013). Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. Psychological Medicine, 43, 553-569.
Derntl, B., Seidel, E. M., Kainz, E., & Carbon, C. C. (2009). Recognition of emotional expressions is affected by inversion and presentation time. Perception, 38, 1849-1862.
Dodrill, C. B., & Troupin, A. S. (1975). Effects of Repeated Administrations of a Comprehensive Neuropsychological Battery among Chronic Epileptics. Journal of Nervous and Mental Disease, 161, 185-190.
Eckes, T. (2009). Many-facet Rasch measurement. In S. Takala (Ed.), Reference supplement to the manual for relating language examinations to the Common Eurpon Framework of Reference for Languages; Learning, teaching, assessment. Strasbourg, France: Council of Europe/Language Policy Division.
Ekman, P. (1999). Basic emotions. In T. Dalgleish & M. Power (Eds.), Handbook of cognition and emotion (pp. 45-60). Hoboken, NJ: John Wiley & Sons.
Ekman, P. (2008). An argument for basic emotions. Cognition and Emotion, 6, 169-200.
Ekman, P., & Cordaro, D. (2011). What is Meant by Calling Emotions Basic. Emotion Review, 3, 364-370.
Erol, A., Mete, L., Sonmez, I., & Unal, E. K. (2010). Facial emotion recognition in patients with schizophrenia and their siblings. Nordic Journal of Psychiatry, 64, 63-67.
Feinberg, T. E., Rifkin, A., Schaffer, C., & Walker, E. (1986). Facial discrimination and emotional recognition in schizophrenia and affective disorders. Archives of General Psychiatry, 43, 276-279.
Fiorentini, C., & Viviani, P. (2009). Perceiving facial expressions. Visual Cognition, 17, 373-411.
Fisekovic, S., Memic, A., & Pasalic, A. (2012). Correlation between moca and mmse for the assessment of cognition in schizophrenia. Acta Informatica Medica, 20, 186-189.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189-198.
Fugate, J. M. (2013). Categorical Perception for Emotional Faces. Emotion Review, 5, 84-89.
Gessler, S., Cutting, J., Frith, C. D., & Weinman, J. (1989). Schizophrenic inability to judge facial emotion: a controlled study. British Journal of Clinical Psychology, 28, 19-29.
Goncalves, A. R., Fernandes, C., Pasion, R., Ferreira-Santos, F., Barbosa, F., & Marques-Teixeira, J. (2018). Effects of age on the identification of emotions in facial expressions: a meta-analysis. PeerJ, 6, e5278.
Green, M. F. (2016). Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. Journal of Clinical Psychiatry, 77, 8-11.
Green, M. F., Penn, D. L., Bentall, R., Carpenter, W. T., Gaebel, W., Gur, R. C., . . . Heinssen, R. (2008). Social cognition in schizophrenia: an NIMH workshop on definitions, assessment, and research opportunities. Schizophrenia Bulletin, 34, 1211-1220.
Guyatt, G. H., Feeny, D. H., & Patrick, D. L. (1993). Measuring health-related quality of life. Annals of Internal Medicine, 118, 622-629.
Habel, U., Krasenbrink, I., Bowi, U., Ott, G., & Schneider, F. (2006). A special role of negative emotion in children and adolescents with schizophrenia and other psychoses. Psychiatry Research, 145, 9-19.
Haley, S. M., Coster, W. J., & Faas, R. M. (1991). A Content Validity Study of the Pediatric Evaluation of Disability Inventory. Pediatric Physical Therapy, 3, 177-184.
Harnad, S. (2003). Categorical perception. In L. Nadel (Ed.), Encyclopedia of Cognitive Science. London, England: Nature Publishing Group.
Haro, J. M., Kamath, S. A., Ochoa, S., Novick, D., Rele, K., Fargas, A., . . . Soho Study Group. (2003). The Clinical Global Impression-Schizophrenia scale: a simple instrument to measure the diversity of symptoms present in schizophrenia. Acta Psychiatrica Scandinavica, 107, 16-23.
Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28-II42.
Hoffmann, H., Kessler, H., Eppel, T., Rukavina, S., & Traue, H. C. (2010). Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men. Acta Psychologica, 135, 278-283.
Hou, W. H., Shih, C. L., Chou, Y. T., Sheu, C. F., Lin, J. H., Wu, H. C., . . . Hsieh, C. L. (2012). Development of a computerized adaptive testing system of the Fugl-Meyer motor scale in stroke patients. Archives of Physical Medicine and Rehabilitation, 93, 1014-1020.
Hsueh, I. P., Chen, J. H., Wang, C. H., Chen, C. T., Sheu, C. F., Wang, W. C., . . . Hsieh, C. L. (2010). Development of a computerized adaptive test for assessing balance function in patients with stroke. Physical Therapy, 90, 1336-1344.
Hsueh, I. P., Chen, J. H., Wang, C. H., Hou, W. H., & Hsieh, C. L. (2013). Development of a computerized adaptive test for assessing activities of daily living in outpatients with stroke. Physical Therapy, 93, 681-693.
Jablensky, A., Kirkbride, J. B., & Jones, P. B. (2011). Schizophrenia: the epidemiological horizon. In D. R. Weinberger & P. J. Harrison (Eds.), Schizophrenia, Third Edition (pp. 185-225). Hoboken, NJ: Wiley-Blackwell.
Kerr, S. L., & Neale, J. M. (1993). Emotion Perception in Schizophrenia - Specific Deficit or Further Evidence of Generalized Poor Performance. Journal of Abnormal Psychology, 102, 312-318.
Kline, P. (1998). The new psychometrics: Science, psychology, and measurement. Abingdon, Oxon: Routledge.
Kohler, C. G., Turner, T. H., Bilker, W. B., Brensinger, C. M., Siegel, S. J., Kanes, S. J., . . . Gur, R. C. (2003). Facial emotion recognition in schizophrenia: intensity effects and error pattern. American Journal of Psychiatry, 160, 1768-1774.
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15, 155-163.
Kret, M. E., & De Gelder, B. (2012). A review on sex differences in processing emotional signals. Neuropsychologia, 50, 1211-1221.
Lee, S. C., Huang, Y. J., Lin, G. H., Chou, Y. T., Chou, C. Y., & Hsieh, C. L. (2018). Development of a Social Functioning Assessment Using Computerized Adaptive Testing for Patients With Stroke. Archives of Physical Medicine and Rehabilitation, 99, 306-313.
Lin, C. J., & Spray, J. (2000). Effects of Item-Selection Criteria on Classification Testing with the Sequential Probability Ratio Test. (Research Report 2000-8). Iowa City, IA: American College Testing.
Lin, G. H., Huang, Y. J., Lee, S. C., Huang, S. L., & Hsieh, C. L. (2018). Development of a Computerized Adaptive Testing System of the Functional Assessment of Stroke. Archives of Physical Medicine and Rehabilitation, 99, 676-683.
Linacre, J. M. (2007). A user’s guide to Winsteps. Rasch-model computer programs. [Computer program and manual]. Chicago, IL: Winsteps.com.
Maat, A., Fett, A. K., Derks, E., & Group Investigators. (2012). Social cognition and quality of life in schizophrenia. Schizophrenia Research, 137, 212-218.
Madeira, N., Caldeira, S., Bajouco, M., Pereira, A. T., Martins, M. J., & Macedo, A. (2016). Social Cognition, Negative Symptoms and Psychosocial Functioning in Schizophrenia. International Journal of Clinical Neurosciences and Mental Health, 3, 1-11.
Mancuso, C. A., Peterson, M. G., & Charlson, M. E. (2001). Comparing discriminative validity between a disease-specific and a general health scale in patients with moderate asthma. Journal of Clinical Epidemiology, 54, 263-274.
Mandal, M. K., & Palchoudhury, S. (1985). Perceptual skill in decoding facial affect. Perceptual and Motor Skills, 60, 96-98.
McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic Reviews, 30, 67-76.
Millan, M. J., Fone, K., Steckler, T., & Horan, W. P. (2014). Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. European Neuropsychopharmacology, 24, 645-692.
Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., . . . de Vet, H. C. (2010). The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. Journal of Clinical Epidemiology, 63, 737-745.
Morris, R. W., Weickert, C. S., & Loughland, C. M. (2009). Emotional face processing in schizophrenia. Current Opinion in Psychiatry, 22, 140-146.
Mote, J., & Kring, A. M. (2016). Facial emotion perception in schizophrenia: Does sex matter? World Journal of Psychiatry, 6, 257.
Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: a meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3, 207-233.
Nowicki jr, S., & Hartigan, M. (1988). Accuracy of facial affect recognition as a function of locus of control orientation and anticipated interpersonal interaction. Journal of Social Psychology, 128, 363-372.
Ochoa, S., Usall, J., Cobo, J., Labad, X., & Kulkarni, J. (2012). Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophrenia Research and Treatment, 2012, 916198.
Pinkham, A. E. (2014). Social cognition in schizophrenia. Journal of Clinical Psychiatry, 75, 14-19.
Pinkham, A. E., Harvey, P. D., & Penn, D. L. (2018). Social Cognition Psychometric Evaluation: Results of the Final Validation Study. Schizophrenia Bulletin, 44, 737-748.
Pinkham, A. E., Penn, D. L., Green, M. F., & Harvey, P. D. (2016). Social Cognition Psychometric Evaluation: Results of the Initial Psychometric Study. Schizophrenia Bulletin, 42, 494-504.
Prkachin, G. C. (2003). The effects of orientation on detection and identification of facial expressions of emotion. British Journal of Psychology, 94, 45-62.
Rademeyer, M., & Joubert, P. (2016). A comparison between the Mini-Mental State Examination and the Montreal Cognitive Assessment Test in schizophrenia. South African Journal of Psychiatry, 22, 890.
Ramirez, L. R. B., Saracco-Alvarez, R., Escamilla-Orozco, R., & Orellana, A. F. (2014). Validity of the Montreal Cognitive Assessment Scale (MoCA) to detect cognitive impairment in schizophrenia. Salud Mental, 37, 517-522.
Rasch, G. (1960). Probabilistic models for some intelligent and attainment tests. Copenhagen, Denmark: Danmarks Paedogogische Institut.
Robinson, D. G., Woerner, M. G., McMeniman, M., Mendelowitz, A., & Bilder, R. M. (2004). Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. American Journal of Psychiatry, 161, 473-479.
Rotter, N. G., & Rotter, G. S. (1988). Sex-Differences in the Encoding and Decoding of Negative Facial Emotions. Journal of Nonverbal Behavior, 12, 139-148.
Russell, J. A. (1980). A Circumplex Model of Affect. Journal of Personality and Social Psychology, 39, 1161-1178.
Russell, J. A., & Bullock, M. (1985). Multidimensional-Scaling of Emotional Facial Expressions: Similarity from Preschoolers to Adults. Journal of Personality and Social Psychology, 48, 1290-1298.
Savla, G. N., Vella, L., Armstrong, C. C., Penn, D. L., & Twamley, E. W. (2013). Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39, 979-992.
Schlosberg, H. (1941). A scale for the judgment of facial expressions. Journal of Experimental Psychology, 29, 497-510.
Schlosberg, H. (1952). The description of facial expressions in terms of two dimensions. Journal of Experimental Psychology, 44, 229-237.
Schmidt, S. J., Mueller, D. R., & Roder, V. (2011). Social cognition as a mediator variable between neurocognition and functional outcome in schizophrenia: empirical review and new results by structural equation modeling. Schizophrenia Bulletin, 37, S41-S54.
Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika, 61, 331-354.
Souza, A. C., Alexandre, N. M. C., & Guirardello, E. B. (2017). Psychometric properties in instruments evaluation of reliability and validity. Epidemiologia e Serviços de Saúde, 26, 649-659.
Takehara, T., Ochiai, F., & Suzuki, N. (2016). A small-world network model of facial emotion recognition. Quarterly Journal of Experimental Psychology, 69, 1508-1529.
Tesio, L. (2003). Measuring behaviours and perceptions: Rasch analysis as a tool for rehabilitation research. Journal of Rehabilitation Medicine, 35, 105-115.
Thompson, N. A. (2007). A practitioner’s guide for variable-length computerized classification testing. Practical Assessment, Research & Evaluation, 12, 1-13.
Thompson, N. A. (2008). Item Selection in Computerized Classification Testing. Educational and Psychological Measurement, 69, 778-793.
Tomkins, S. (1962). Affect imagery consciousness: Volume I: The positive affects. New York City, NY: Springer Publishing Company.
Tomkins, S. (1963). Affect imagery consciousness: Volume II: The negative affects. New York City, NY: Springer Publishing Company.
van der Linden, W. J. (1993). Sample independency in the Rasch model. Rasch Measurement Transactions, 6, 247-247.
Waaramaa, T. (2017). Gender differences in identifying emotions from auditory and visual stimuli. Logopedics, Phoniatrics, Vocology, 42, 160-166.
Wang, C., Weiss, D. J., & Su, S. (2019). Modeling Response Time and Responses in Multidimensional Health Measurement. Frontiers in Psychology, 10, 51.
Wang, W. C., & Chen, P. H. (2016). Implementation and Measurement Efficiency of Multidimensional Computerized Adaptive Testing. Applied Psychological Measurement, 28, 295-316.
Wang, W. C., Chen, P. H., & Cheng, Y. Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116-136.
Wright, B. D. (1968). Sample-free test calibration and person measurement. Paper presented at the Proceedings of the 1967 Invitational Conference on Testing Problems, Princeton, NJ.
Wright, B. D. (1988). Georg Rasch and measurement. Rasch Measurement Transactions, 2, 25-32.
Wright, B. D., & Linacre, M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8, 370.
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago, IL: MESA Press.
Wu, C., Dagg, P., & Molgat, C. (2014). A pilot study to measure cognitive impairment in patients with severe schizophrenia with the Montreal Cognitive Assessment (MoCA). Schizophrenia Research, 158, 151-155.
Young, A. W., Perrett, D., Calder, A., Sprengelmeyer, R., & Ekman, P. (2002). Facial expressions of emotion: Stimuli and tests (FEEST). Bury St Edmunds, England: Thames Valley Test Company.
Young, A. W., Rowland, D., Calder, A. J., Etcoff, N. L., Seth, A., & Perrett, D. I. (1997). Facial expression megamix: tests of dimensional and category accounts of emotion recognition. Cognition, 63, 271-313.
Zieky, M. (2003). A DIF primer. Princeton, NJ: Educational Testing Service.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔