|
[1] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34(6): 52-59, 1997 [2] Theis, T. N., Solomon, P. M. "It’s Time to Reinvent the Transistor! " Science. 327(5973):1600-1, 2010 [3] R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, "Integrated nanoelectronics for the future. "Nat Mater. 6(11):810-2, 2007 [4] Powell, J. R. "The quantum limit to Moore's law." Proceedings of the IEEE. 96(8): 1247-1248, 2008 [5] Waldrop, M. M. "The chips are down for Moore’s law." Nature News. 530(7589): 144, 2016 [6] Chen, Z., Lin, Y. M., Rooks, M. J., & Avouris, P. "Graphene nano-ribbon electronics." Phys. E. 40(2): 228-232, 2007 [7] Schedin, F., Geim, A. K., Morozov, S. V., et al. "Detection of individual gas molecules adsorbed on graphene." Nat. mater. 6(9): 652, 2007 [8] Alivisatos, A.P. "Perspectives on the physical chemistry of semiconductor nanocrystals. " J. Phys. Chem. 100:13226, 1996 [9] Yun, W. S., Han, W. S., Hong, S. C., Kim, I. G., Lee, J. D. “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors” Phys. Rev. B. 85: 2012 [10] Radisavljevic, B. et al. "Single-layer MoS2 transistors." Nat. Nanotech. 6(3): 147, 2011 [11] Wu, W., et al. "High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains." Appl. Phys. Lett. 102(14): 142106, 2013 [12] Lopez-Sanchez, O., et al. "Ultrasensitive photodetectors based on monolayer MoS2" Nat. Nanotech. 8 (7): 497-501, 2013
[13] Roy, K. et al. "Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. " Nat. Nanotech. 8: 826-830, 2013 [14] Das, S., Gulotty, R., Sumant, A. V., Roelofs, A. “Ultrahigh-gain photodetectors based on atomically thin Graphene-MoS2 heterostructures.” Sci Rep. 4: 3826 2014 [15] Das, S., Gulotty, R., Sumant, A. V., Roelofs, A. "All two-dimensional, flexible, transparent, and thinnest thin film transistor. ", Nano Lett.14 (5): 2861-2866, 2014 [16] Wang, H., et al. "Integrated circuits based on bilayer MoS2 transistors." Nano. Letters. 12(9): 4674-4680, 2012 [17] Xiao, J., et al. "Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries." Chem. Mater. 22(16): 4522-4524, 2010 [18] H. E. Sliney, "Solid lubricant materials for high temperatures—a review." Tribol. Int. 15(5): 303-315, 1982 [19] Braga, Daniele, et al. "Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors." Nano. Letters. 12(10): 5218-5223, 2012 [20] Hong, X., et al. "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures." Nat. nanotech. 9(9): 682, 2014 [21] Huo, N., Yang, J., Huang, L., Wei, Z., Li, S. S., Wei, S. H., & Li, J. "Tunable Polarity Behavior and Self‐Driven Photoswitching in p‐WSe2/n‐WS2 Heterojunctions." Small 11(40): 5430-5438, 2015 [22] Zhao, X., et al. "Effective p-type N-doped WS2 monolayer." J. Alloy. Comp. 649: 357-361, 2015 [23] Chen, R. S., et al. "Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers." Nanotech. 25(41): 415706, 2014 [24] Siao, M. D., et al. "Two-dimensional electronic transport and surface electron accumulation in MoS2." Nat. commun. 9(1): 1442, 2018. [25] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nat. nanotech. 7(11): 699, 2012 [26] Toh, R. J., et al. "3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution." Chem. Commun. 53(21): 3054-3057, 2017 [27] Bissessur, R., et al. "Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2." J. Chem. Soc. Chem. Commun. 20: 1582-1585, 1993 [28] Kam, K. K., and B. A. Parkinson. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." J. Phys. Chem. 86(4): 463-467, 1982 [29] Zhao, W., et al. "Evolution of electronic structure in atomically thin sheets of WS2 and WSe2." ACS nano 7(1): 791-797, 2012 [30] Cullity, B. D., Stock, S. R. Elements of X-ray diffraction. Prentice Hall, New Jersey (2001). [31] Pollak, Fred H. et al. "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices." Mater. Sci. Eng. R 10: 275-374 ,1993 [32] Tseng, A. A. "Recent Developments in Nanofabrication using Focused Ion Beams", Small. 1: 924-939, 2005 [33] A. A. Tseng, "Recent developments in micromilling using focused ion beam technology", J. Micromech. Microeng. 14: 15-34, 2004 [34] Tseng, A. A., Chen, K., Chen, C.D., Ma, K. J., "Electron beam lithography in nanoscale fabrication: recent development", IEEE Trans. Electron. Packag. Manuf. 26: 141–149, 2003 [35] Braet, F., De Zanger, R., & Wisse, E. "Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells", J. Micro. 186:84–87, 1997 [36] From Wikipedia, the free encyclopedia, http://en .wikipedia.org/ wiki/Scanning_tunneling_microscope [37] Hansma, P.K. “Scanning tunneling microscopy.” J. appl. Phys. 61(2), 1-24, 1987 [38] Shen, Z. X. “Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors”, 2007 [39] Damascelli, A. “Probing the electronic structure of complex systems by state-of-art ARPES”, 2007 [40] Chang, Y. M., Kim, H., Lee, J. H., & Song, Y. W. “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., 97(21): 211102, 2010 [41] Nam, C. Y., Tham, D., Fischer, J. E., “Disorder effects in focused-ionbeam-deposited Pt contacts on GaN nanowires”, Nano Lett., 5: 2029-2033, 2005 [42] Donald A. Neamen, “Semiconductor Physics and Devices”, 2011 [43] Berkdemir, A et. al., "Identification of individual and few layers of WS2 using Raman spectroscopy." Scientific reports 3 (2013): 1755. [44] Yen, P. C., Y. S. Huang, and K. K. Tiong. "The growth and characterization of rhenium-doped WS2 single crystals." J. Phys.: Condens. Matter. 16(12): 2171, 2004 [45] 沈葦竹, “二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性”國立台灣科技大學電子工程所碩士學位論文,2015 [46] Kam, Kam-Keung. "Electrical properties of WSe2, WS2, MoSe2, MoS2, and their use as photoanodes in a semiconductor liquid junction solar cell." (1982).
[47] Solanki, G. K., et al. "Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique." Cryst. Res. Technol. 43(2): 179-185, 2008
[48] F. A. Filip, K. S. Thygesen, “Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides”, J. Phys. Chem. C, 119: 13169-13183, 2015 [49] Ovchinnikov, Dmitry, et al. "Electrical transport properties of single-layer WS2." ACS nano 8(8): 8174-8181, 2014
|