|
1. Agarwal, D. K., Gelfand, A. E., & Citron-Pousty, S. (2002). Zero-inflated models with application to spatial count data. Environmental and Ecological statistics, 9(4), 341-355. 2. Anscombe, F. J. (1950). Sampling theory of the negative binomial and logarithmic series distributions. Biometrika, 37(3/4), 358-382. 3. Arul, S. D., & Joyce, V. J. (2010). Selection of mixed sampling plans for second quality lots. Economic Quality Control, 25(1), 31-42. 4. Baksh, M. F., Böhning, D., & Lerdsuwansri, R. (2011). An extension of an over-dispersion test for count data. Computational Statistics & Data Analysis, 55(1), 466-474. 5. Balamurali, S., & Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327-338. 6. Balamurali, S., & Jun, C. H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221–1230. 7. Balamurali, S., Park, H., Jun, C. H., Kim, K. J., & Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics - Simulation and Computation, 34(3), 799–809. 8. Bassett, J., Jackson, T., Jewell, K., Jongenburger, I., & Zwietering, M. H. (2010). Impact of microbial distributions on food safety. ILSI Europe. 9. Bowker, A. H., & Goode, H. P. (1952). Sampling inspectin by variables. New York: McGraw-Hill. 10. Bray, D. F., Lyon, D. A., & Burr, I. W. (1973). Three class attributes plans in acceptance sampling. Technometrics, 15(3), 575-585. 11. Cao, Y., & Subramaniam, V. (2013). Improving the performance of manufacturing systems with continuous sampling plans. IIE Transactions, 45(6), 575-590. 12. Collani, E. V. (1991). A note on acceptance sampling for variables. Metrika, 38(1), 19-36. 13. Constantine, A. G., Field, J. B. F., & Robinson, N. I. (2000). Theory & methods: probabilities of failure in mixed acceptance sampling schemes. Australian & New Zealand Journal of Statistics, 42(2), 225-233. 14. Couturier, D. L., & Victoria-Feser, M. P. (2010). Zero-inflated truncated generalized Pareto distribution for the analysis of radio audience data. The Annals of Applied Statistics, 4(4), 1824-1846. 15. Croarkin, M. C., & Yang, G. L. (1982). Acceptance probabilities for a sampling procedure based on the mean and an order statistic. Journal of Research of the National Bureau of Standards, 87(6), 485–511. 16. Czado, C., Erhardt, V., Min, A., & Wagner, S. (2007). Zero-inflated generalized Poisson models with regression effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates. Statistical Modelling, 7(2), 125-153. 17. Dahms, S., & Hildebrandt, G. (1998). Some remarks on the design of three-class sampling plans. Journal of Food Protection, 61(6), 757-761. 18. Das, N. G., & Mitra, S. K. (1964). Effect of non-normality on plans for sampling inspection by variables. Sankhyā: The Indian Journal of Statistics, Series A, 26(2-3)169-176. 19. Dodge, H. F., & Romig, H. G. (1929). A method of sampling inspection. Bell System Technical Journal, 8(4), 613-631. 20. Dodge, H. F., & Romig, H. G. (1941). Single sampling and double sampling inspection tables. The Bell System Technical Journal, 20(1), 1-61. 21. Dodge, H. F., & Romig, H. G. (1959). Sampling inspection tables: single and double sampling. New York: Wiley. 22. Duarte, B. P., & Saraiva, P. M. (2008). An optimization-based approach for designing attribute acceptance sampling plans. International Journal of Quality & Reliability Management, 25(8), 824-841. 23. Duffuaa, S. O., Al-Turki, U. M., & Kolus, A. A. (2009). Process-targeting model for a product with two dependent quality characteristics using acceptance sampling plans. International Journal of Production Research, 47(14), 4031-4046. 24. Duncan, A. J. (1986). Quality control and industrial statistics. Homewood, Illinois: Richard D. Irwin, Inc. 25. Elder, R. S., & Muse, H. D. (1982). An approximate method for evaluating mixed sampling plans. Technometrics, 24(3), 207–211. 26. European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuff. Official Journal of the European Union L. 2005; 338 (22), 1–26. 27. Fang, R. (2013). Zero-inflated negative binomial (ZINB) regression model for over-dispersed count data with excess zeros and repeated measures, an application to human microbiota sequence data. Doctoral dissertation, Denver, Colorado: University of Colorado. 28. Faroughi, P., & Ismail, N. (2017). Bivariate zero-inflated negative binomial regression model with applications. Journal of Statistical Computation and Simulation, 87(3), 457-477. 29. Figueiredo, F., Figueiredo, A., & Gomes, M. I. (2015). Acceptance sampling plans for inflated Pareto processes. In 4th international symposium on statistical process monitoring, ISSPM, Padua, Italy, 7–9, July, 2015. 30. Figueiredo, F., Figueiredo, A., & Gomes, M. I. (2018). Acceptance-Sampling Plans for Reducing the Risk Associated with Chemical Compounds. In Recent Studies on Risk Analysis and Statistical Modeling (pp. 99-111). Springer, Cham. 31. Gonzales-Barron, U., & Butler, F. (2011). A comparison between the discrete Poisson-gamma and Poisson-lognormal distributions to characterize microbial counts in foods. Food Control, 22(8), 1279-1286. 32. Gonzales-Barron, U., & Cadavez, V. (2017). Statistical Derivation of Sampling Plans for Microbiological Testing of Foods. In Microbial Control and Food Preservation (pp. 381-412). New York: Springer. 33. Gonzales-Barron, U., Kerr, M., Sheridan, J. J., & Butler, F. (2010). Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts. International Journal of Food Microbiology, 136(3), 268-277. 34. Govindaraju, K, & Ganesalingam, S. (1997). Sampling inspection for resubmitted lots. Communications in Statistics - Simulation and Computation, 26(3), 1163–1176. 35. Govindaraju, K., & Kissling, R. (2015). A combined attributes–variables plan. Applied Stochastic Models in Business and Industry, 31(5), 575-583. 36. Govindaraju, K., & Subramani, K. (1990). Selection of multiple deferred state MDS-1 sampling plans for given acceptable quality level and limiting quality level involving minimum risks. Journal of Applied Statistics, 17(3), 427–434. 37. Greene, W. H. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. Working Paper #EC94-10. New York: New York University. 38. Hald, A. (1981). Statistical theory of sampling inspection by attributes. London: Academic Press. 39. Hamaker, H. C. (1958). Some basic principles of sampling inspection by attributes. Applied Statistics, 7(3), 149-159. 40. Hamaker, H. C. (1979). Acceptance sampling for percent defective by variables and by attributes. Journal of Quality Technology, 11(3), 139-148. 41. Hildebrandt, G., Böhmer, L., & Dahms, S. (1995). Three-class attributes plans in microbiological quality control: a contribution to the discussion. Journal of Food Protection, 58(7), 784-790. 42. ICMSF. (1986). Microorganisms in foods 2: Sampling for microbiological analysis; Principles and specific applications. Toronto: University of Toronto Press. 43. ICMSF. (2002). Microorganisms in foods 7: Microbiological testing in a system for managing food safety. New York: Kluwer Acad./Plenum Publishers. 44. ICMSF. (2011). Microorganisms in foods 8: Use of data for assessing process control and product acceptance. New York: Springer. 45. Jansakul, N., & Hinde, J. P. (2008). Score tests for extra-zero models in zero-inflated negative binomial models. Communications in statistics-simulation and computation, 38(1), 92-108. 46. Jarvis, B. (2016). Statistical aspects of the microbiological examination of foods. London: Academic Press. 47. Jennett, W. J., & Welch, B. L. (1939). The control of proportion defective as judged by a single quality characteristic varying on a continuous scale. Supplement to the Journal of the Royal Statistical Society, 6(1), 80-88. 48. Jongenburger, I., Reij, M. W., Boer, E. P. J., Gorris, L. G. M., & Zwietering, M. H. (2011). Random or systematic sampling to detect a localized microbial contamination within a batch of food. Food Control, 22(8), 1448-1455. 49. Jongenburger, I., Reij, M. W., Boer, E. P. J., Zwietering, M. H., & Gorris, L. G. M. (2012). Modelling homogeneous and heterogeneous microbial contaminations in a powdered food product. International Journal of Food Microbiology, 157(1), 35-44. 50. Kilsby, D. C., & Baird-Parker, A. C. (1983). Sampling programmes for microbiological analysis of food. In Food microbiology: Advances and prospects. Society for Applied Bacteriology Symposium series No. 11, (pp. 309-315). London: Academic Press. 51. Kilsby, D. C., Aspinall, L. J., & Baird‐Parker, A. C. (1979). A system for setting numerical microbiological specifications for foods. Journal of Applied Bacteriology, 46(3), 591-599. 52. Lachenbruch, P. A. (2001). Comparisons of two‐part models with competitors. Statistics in Medicine, 20(8), 1215-1234. 53. Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1-14. 54. Lauer, N. G. (1982). Probabilities of noncompliance for sampling plans in NBS Handbook 133. Journal of Quality Technology, 14(3), 162–165. 55. Lee, A. H., Wu, C. W., & Chen, Y. W. (2016). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 238(1-2), 355–373. 56. Legan, J. D., Vandeven, M. H., Dahms, S., & Cole, M. B. (2001). Determining the concentration of microorganisms controlled by attributes sampling plans. Food Control, 12(3), 137-147. 57. Li, Y., Pu, X., & Xiang, D. (2011). Mixed variables-attributes test plans for single and double acceptance sampling under exponential distribution. Mathematical Problems in Engineering, 2011, 1-15. 58. Lieberman, G. J., & Resnikoff, G. J. (1955). Sampling plans for inspection by variables. Journal of the American Statistical Association, 50(270), 457-516. 59. Linkletter, C. D., Ranjan, P., Lin, C. D., Bingham, D. R., Brenneman, W. A., Lockhart, R. A., & Loughin, T. M. (2012). Compliance testing for random effects models with joint acceptance criteria. Technometrics, 54(3), 243–255. 60. Loganathan, A., & Shalini, K. (2014). Determination of single sampling plans by attributes under the conditions of zero-inflated Poisson distribution. Communications in Statistics-Simulation and Computation, 43(3), 538-548. 61. Ma, C., & Robinson, J. (2011). Lot acceptance and compliance testing based on the sample mean and minimum/maximum. Journal of Statistical Planning and Inference, 141(7), 2440 –2448. 62. Malik, M. B. (2012). Extensions and developments on the Schilling and Dodge mixed dependent acceptance sampling plans. Statistical Methodology, 9(4), 486-489. 63. Minami, M., Lennert-Cody, C. E., Gao, W., & Roman-Verdesoto, M. (2007). Modeling shark bycatch: the zero-inflated negative binomial regression model with smoothing. Fisheries Research, 84(2), 210-221. 64. Montgomery, D. C. (2013). Introduction to statistical quality control. New York: Wiley. 65. Mullahy, J. (1997). Heterogeneity, excess zeros, and the structure of count data models. Journal of Applied Econometrics, 12(3), 337-350. 66. Mussida, A., Gonzales-Barron, U., & Butler, F. (2013). Effectiveness of sampling plans by attributes based on mixture distributions characterising microbial clustering in food. Food Control, 34(1), 50-60. 67. Mwalili, S. M., Lesaffre, E., & Declerck, D. (2008). The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research. Statistical Methods in Medical Research, 17(2), 123-139. 68. Newcombe, P. A., & Allen, O. B. (1988). A three-class procedure for acceptance sampling by variables. Technometrics, 30(4), 415-421. 69. Neyman, J. (1939). On a new class of" contagious" distributions, applicable in entomology and bacteriology. The Annals of Mathematical Statistics, 10(1), 35-57. 70. Owen, D. B. (1966). One-sided variables sampling plans. Industrial Quality Control, 22(3), 450-456. 71. Owen, D. B. (1967). Variables sampling plans based on normal distribution. Technometrics, 9(3), 417–423. 72. Owen, D. B. (1969). Summary of recent work on variables acceptance sampling with emphasis on non-normality. Technometrics, 11(4), 631-637. 73. Owen, W. J., & DeRouen, T. A. (1980). Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. Biometrics, 707-719. 74. Palcat, F. A. (2006), Three-class sampling plans: a review with applications, Frontiers in Statistical Quality Control, 8, 34-52. 75. Perumean-Chaney, S. E., Morgan, C., McDowall, D., & Aban, I. (2013). Zero-inflated and over-dispersed: what is one to do? Journal of Statistical Computation and Simulation, 83(9), 1671-1683. 76. R Core Team. (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. 77. Ridout, M., Demétrio, C. G., & Hinde, J. (1998). Models for count data with many zeros. In Proceedings of the XIXth International Biometric Conference (pp.179-192). Cape Town, South Africa: International Biometric Society. 78. Santos-Fernández, E., Govindaraju, K., & Jones, G. (2014). A new variables acceptance sampling plan for food safety. Food Control, 44, 249-257. 79. Santos-Fernández,E.,Govindaraju, K., & Jones, G. (2016a). Quantity-based microbiological sampling plans and quality after inspection. Food Control, 63, 83-92. 80. Santos-Fernández, E., Govindaraju, K., Jones, G., & Kissling, R. (2017). New two-stage sampling inspection plans for bacterial cell counts. Food Control, 73, 503-510. 81. Santos‐Fernández, E., Kondaswamy, G., & Jones, G. (2016b). Compressed limit sampling inspection plans for food safety. Applied Stochastic Models in Business and Industry, 32(4), 469-484. 82. Schilling, E. G. (1985). The role of acceptance sampling in modern quality control. Communications in Statistics-Theory and Methods, 14(11), 2769-2783. 83. Schilling, E. (2005). Average run length and the OC curve of sampling plans. Quality Engineering, 17(3), 399-404. 84. Schilling, E. G., & Dodge, H. F. (1969). Procedures and tables for evaluating dependent mixed acceptance sampling plans. Technometrics, 11(2), 341-372. 85. Schilling, E.G., & Neubauer, D. V. (2017). Acceptance sampling in quality control. Boca Raton, FL: Chapman and Hall/CRC Press. 86. Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhyā: The Indian Journal of Statistics, Series B, 59(1), 96-107. 87. Soundararajan, V., & Vijayaraghavan, R. (1990). Construction and selection of multiple dependent (deferred) state sampling plan. Journal of Applied Statistics, 17(3), 397-409. 88. Suresh, K. K., & Devaarul, S. (2002). Designing and selection of mixed sampling plan with chain sampling as attribute plan. Quality Engineering, 15(1), 155-160. 89. Suresh, K. K., & Devaarul, S. (2003). Multidimensional mixed sampling plans. Quality Engineering, 16(2), 233-237. 90. Tian, L. (2005). Inferences on the mean of zero‐inflated lognormal data: the generalized variable approach. Statistics in Medicine, 24(20), 3223-3232. 91. Valero, A., Pasquali, F., De Cesare, A., & Manfreda, G. (2014). Model approach to estimate the probability of accepting a lot of heterogeneously contaminated powdered food using different sampling strategies. International Journal of Food Microbiology, 184, 35-38. 92. Vangel, M. G. (2002). Lot acceptance and compliance testing using the sample mean and an extremum. Technometrics, 44 (3), 242–249. 93. Van Schothorst, M., Zwietering, M. H., Ross, T., Buchanan, R. L., & Cole, M. B. (2009). Relating microbiological criteria to food safety objectives and performance objectives. Food Control, 20(11), 967-979. 94. Wallis, W. A. (1947). Use of variables in acceptance inspection for percent defective. Techniques of Statistical Analysis, 3-111. 95. Wang, F. K. (2018). Sampling plans by variables for inflated-Pareto data in the food industry. Food Control, 84, 97-105. 96. Wang, F. K., & Tamirat, Y. (2016). Two new independent mixed sampling plans for inspecting a product with linear profiles. Quality and Reliability Engineering International, 32(8), 2999-3009. 97. Whitaker, T. B., Doko, M. B., Maestroni, B. M., Slate, A. B., & Ogunbanwo, B. F. (2007). Evaluating the performance of sampling plans to detect fumonisin B1 in maize lots marketed in Nigeria. Journal of AOAC International, 90(4), 1050-1059. 98. Wilrich, P. T., & Weiss, H. (2011). Three-class sampling plans for the evaluation of bacterial contamination. Milchwissenschaft, 66(4), 413-416. 99. Wortham, A. W., & Baker, R. C. (1976). Multiple deferred state sampling inspection. International Journal of Production Research, 14(6), 719–731. 100. Yau, K. K., Wang, K., & Lee, A. H. (2003). Zero‐inflated negative binomial mixed regression modeling of over‐dispersed count data with extra zeros. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45(4), 437-452. 101. Yee, T. W., & Dirnböck, T. (2009). Models for analysing species’ presence/absence data at two time points. Journal of Theoretical Biology, 259(4), 684-694. 102. Zidan, M., Wang, J. C., & Niewiadomska‐bugaj, M. (2011). Comparison of k independent, zero‐heavy lognormal distributions. Canadian Journal of Statistics, 39(4), 690-702.
|