|
Andreoletti, D., Troia, S., Musumeci, F., Silvia, G., Maier, G. A., & Tornatore, M. (2019). Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks. In INFOCOM (pp. 1-6). Cai, W., Chen, S. & Zhang, D. (2010). A multiobjective simultaneous learning framework for clustering and classification. IEEE Transactions on Nneural Networks, 21(2), 185-200. Connor, J. T., Martin, R. D. & Atlas, L. E. (1994). Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 5(2), 240-254. Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen, H. H. & Lee, Y. C. (1992). Extracting and learning an unknown grammar with recurrent neural networks. In Advances in Neural Information Processing Systems (pp. 317-324). Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT press. Forcada, M. L. & Carrasco, R. C. (1995). Learning the initial state of a second-order recurrent neural network during regular-language inference. Neural computation, 7(5), 923-930. Grall, A., Dieulle, L., Bérenguer, C. & Roussignol, M. (2002). Continuous-time predictive-maintenance scheduling for a deteriorating system. IEEE Transactions on Reliability, 51(2), 141-150. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850. Graves, A. & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610. Guo, L., Li, N., Jia, F., Lei, Y. & Lin, J. (2017). A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98-109. Hinton, G. E., Osindero, S. & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554. Jakarta Smart City, 2018., https://smartcity.jakarta.go.id/, (online accessed: 2018). Hong, S., Zhou, Z., Zio, E. & Hong, K. (2014). Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digital Signal Processing, 27, 159-166. Kalchbrenner, N. & Blunsom, P. (2013). Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 1700-1709). Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105). Lawrence, S., Giles, C. L. & Fong, S. (2000). Natural language grammatical inference with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering, 12(1), 126-140. LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning. nature, 521(7553), 436. Lipton, Z. C., Berkowitz, J. & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019. Mikolov, T. (2012). Statistical language models based on neural networks. Presentation at Google, Mountain View, 2nd April. Mikolov, T. & Zweig, G. (2012). Context dependent recurrent neural network language model. SLT, 12(234-239), 8. Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133. Mukhopadhyay, A., Bandyopadhyay, S. & Maulik, U. (2010). Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification. PloS one, 5(11), e13803. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N. & Varnier, C. (2012, June). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In IEEE International Conference on Prognostics and Health Management, PHM'12. (pp. 1-8). IEEE Catalog Number: CPF12PHM-CDR. Pattara-Atikom, W., Pongpaibool, P. & Thajchayapong, S. (2006, June). Estimating road traffic congestion using vehicle velocity. In ITS Telecommunications Proceedings, 2006 6th International Conference on (pp. 1001-1004). IEEE. Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on machine learning (pp. 63-71). Springer, Berlin, Heidelberg. Saad, E. W., Prokhorov, D. V. & Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6), 1456-1470. Salakhutdinov, R. & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 693-700). Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. Shi, B., Bai, X. & Yao, C. (2017). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2298-2304. Singh, S., Tripathy, M. & Anand, R. S. (2014). Subjective and objective analysis of speech enhancement algorithms for single channel speech patterns of Indian and english languages. IETE Technical Review, 31(1), 34-46. Su, H. & Yu, S. (2007, November). Hybrid GA based online support vector machine model for short-term traffic flow forecasting. In International Workshop on Advanced Parallel Processing Technologies (pp. 743-752). Springer, Berlin, Heidelberg. Sun, M., Zhang, X. & Zheng, T. F. (2016). Unseen noise estimation using separable deep auto encoder for speech enhancement. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 24(1), 93-104. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S. & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820. Sutrisno, E., Oh, H., Vasan, A. S. S. & Pecht, M. (2012, June). Estimation of remaining useful life of ball bearings using data driven methodologies. In Prognostics and Health Management (PHM), 2012 IEEE Conference on (pp. 1-7). Tawhid, M. A. & Savsani, V. (2017). Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Computing and Applications, 1-15. Tian, K., Zhou, S. & Guan, J. (2017). DeepCluster: A General Clustering Framework based on Deep Learning. Joint European Conference on Machine Learning and Knowledge Discovery in Databases (p. 3). Springer, Cham. Younes, M. B. & Boukerche, A. (2015). A performance evaluation of an efficient traffic congestion detection protocol (ECODE) for intelligent transportation systems. Ad Hoc Networks, 24, 317-336
|