跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳仲安
研究生(外文):Chung-An Wu
論文名稱:心智模型測量方法於使用者研究 - 以概念圖探索行為背後的使用者認知
論文名稱(外文):Mental Model Measurement in UX Research - Apply Concept Mapping for understanding user cognition beyond performances
指導教授:林久翔林久翔引用關係
指導教授(外文):Chiu-Hsiang Lin
口試委員:林希偉孫天龍
口試委員(外文):Shi-Woei LinTien-Lung Sun
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:使用者經驗研究易用性測試心智模型概念圖近似值指數
外文關鍵詞:User ExperienceUXUsability TestingMental ModelConcept MapCloseness Index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據先前的物聯網介面評估計畫,研究團隊認為現行的使用者經驗研究實務場域尚缺乏一個更有效率的心智模型量測方法,而本研究認為概念圖是其中最適合的選擇。概念圖作為一種將個人認知架構以概念節點和其間關係作為表徵的圖形,同時符合計畫中的觀察結果和實際應用需求。
為了確認此量測方法和經由客觀計算產出之概念圖相似值指數可被應用於滿足實務需求,本研究先以另一經由主觀感知產生的相似度分數作為效標,並計算兩者之間的相關程度作為相似值指數的效標關聯效度,最終兩個變數之間呈現中等程度的相關 (r = 0.513, p < .01)。再者,將兩個變數分別作為應變數 (y),並協同可能影響概念圖相似度的預想影響因子集合產生兩個迴歸模型,用於檢視、比較兩種相似度的可能判斷來源組成。根據迴歸模型,主觀認知相似度主要反映較高層次的圖形特性與作答者背景知識,而相似值指數則涵蓋全部層次的圖形特徵以及作答者認知。
綜上所述,概念圖是一個囊括靈活性、適應性、經濟性、自動化可能和信效度的心智模型測量方法。若評分和執行方法設計得宜,此量測方法可被廣泛應用於各種目的的心智模型測量,亦可橫跨所有產品開發階段。
Based on previous IoT UI evaluation project, the need for a more efficient mental model measurement tool in UX research practices was identified, and concept mapping was considered the ideal candidate. Concept mapping is a kind of cognitive structure presentation that reflects the person’s mind by concept nodes and relationships between, which matches prior observations and meets practical needs.
To validate the method and corresponding objectively-calculated closeness index as the similarity parameter, the subject-perceived similarity was utilized to measure the criterion-related validity, indicating a moderate correlation between the two (r = 0.513, p < .01). Next, the two variables than served as the response (y) in fitted regression models, for further contributory factor inspection and comparison. As a result, subjective similarity reflects mainly the higher-level graphical features and subject’s background knowledge, while the other grasp all aspects and local graphical features.
In conclusion, concept mapping possesses many advantages for it being flexible, adaptable, economical, automatable, and reliable as a mental model measurement and assessment tool. If designed properly, the method is capable of being applied for various purposes as well as across design development stages.
摘要 iii
Abstract iv
Acknowledgment v
Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
1.3 Research Objective and Hypothesis 8
Chapter 2 Literature Review 11
2.1 Internet of Things (IoT) 11
2.1.1 IoT architecture and application categories 13
2.1.2 Interaction patterns 16
2.2 Mental Model 21
2.2.1 Measurement Methods 23
2.3 Concept Mapping 26
2.3.1 Diagram features 27
2.3.2 Task development 30
2.3.3 Scoring system 34
Chapter 3 Methods 42
3.1 Subject 42
3.2 Experiment Design 44
3.2.1 Concept mapping assessment system for UX research 44
3.2.2 Concept mapping task 46
3.2.3 Task sequence 51
3.2.4 Variables and format 52
3.3 Apparatus and Tools 55
3.4 Experiment Procedure 58
Chapter 4 Results 59
Chapter 5 Discussion 71
5.1 Concept Map Comparison 71
5.2 Research Design 74
Chapter 6 Conclusions 78
6.1 Conclusion 78
6.2 Limitation 79
6.3 Future Research 80
REFERENCES 81
APPENDIX I – Rules of drawing a concept map 85
APPENDIX II – Criterion map of each task 87
Agile alliance. (2013, June 8). What is Agile Software Development?. [Blog post]. Retrieved from https://www.agilealliance.org/agile101/
Akoglu, H. (2018). User's guide to correlation coefficients. Turkish journal of emergency medicine, 18(3), 91–93. doi:10.1016/j.tjem.2018.08.001
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: a survey on enabling technologies, protocols, and applications. IEEECommun. Surv. Tutor. 17 (4), 2347–2376.
Andreas, B. G. (1972). Experimental psychology (2nd edition). New York, USA: John Wiley & Sons.
Andrews, K., & Smrdel, A. (2017). Responsive Data Visualisation. 113-115. Poster session presented at Eurographics / VGTC Conference on Visualization, Barcelona, Spain. https://doi.org/10.2312/eurp.20171182
Anohina-Naumeca, A., & Graudina, V. (2012). Diversity of concept mapping tasks: degree of difficulty, directedness, and task constraints. Proceedings of the 5th International Conference on Concept Mapping, 164-171.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence, & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89-195). New York: Academic Press.
Bias, R. G., Moon, B. M., & Hoffman, R. R. (2015). Concept mapping usability evaluation: An exploratory study of a new usability inspection method. International Journal of Human-Computer Interaction, 31(9), 571-583. doi:10.1080/10447318.2015.1065692
Brambilla, M., Umuhoza, E., & Acerbis, R. (2017). Model-driven development of user interfaces for IoT systems via domain-specific components and patterns. Journal of Internet Services and Applications, 8(1). doi:10.1186/s13174-017-0064-1
Chokshi, S., & Mann, D. (2018). Innovating from within: A process model for user-centered digital development in academic medical centers. JMIR Human Factors.
Goldsmith, T. E., Johnson. P. J. & Acton, W. H. (1991). Assessing structural knowledge. Journal of Educational Psychology, 83, 88-96.
Gothelf, J. (2013). Lean UX: Applying lean principles to improve user experience. Cambridge, MA: O’Reilly Media.
Grundspenkis, J., & Strautmane, M. (2009). Usage of Graph Patterns for Knowledge Assessment Based on Concept Maps. Scientific Journal of Riga Technical University, Computer Science, 38, 60-71.
Gubbi, J., Buyya, R., S. Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29 (7), 1645-1660.
Harnisch, D. L., Sato, T., Zheng, P., Yamaji, S., & Connell, M. (1996). Concept mapping approach and its implications in instruction and assessment. Computers in the Schools, 5(3), 132-168.
Hassenzahl, M., & Tractinsky, N. (2006). User Experience – A Research Agenda. Behaviour & Information Technology, 25(2), 91-97.
Hoz, R., Tomer, Y., & Tamir, P. (1990). The relations between disciplinary and pedagogi- cal knowledge and the length of teaching experience of biology and geography teachers. Journal of Research in Science Teaching, 27, 973-985.
International Telecommunication Union, ITU. (2012). Overview of the Internet of things. ITU.
Isomursu, M., Sirotkin, A., Voltti, P., & Halonen, M. (2012). User experience design goes agile in lean transformation – A Case Study. Proc of Agile Conference (AGILE), 1–10.
Lomask, M., Baron, J. B., Greig, J., & Harrison, C. (1992, March). ConnMap: Connecti- cut’s use of concept mapping to assess the structure of students’ knowledge of science. Paper presented at the annual meeting of the National Association of Research in Science Teaching, Cambridge, MA.
Ng, I. C. L., & Wakenshaw, S. Y. L. (2017). The internet-of-things: Review and research di-rections. International Journal of Research in Marketing, 34(1), 3–21.
Nielsen, J. (1989). Usability engineering at a discount. In Salvendy, G., and Smith, M.J. (Eds.), Designing and Using Human-Computer Interfaces and Knowledge Based Systems, Elsevier Science Publishers, Amsterdam. 394-401.
Nielsen, J. (2010, October 18). Mental Models. Retrieved June 25, 2019, from https://www.nngroup.com/articles/mental-models/
Nielsen, J., and Landauer, T. K. (1993). A mathematical model of the finding of usability problems. Proc. ACM INTERCHI'93 Conf. (Amsterdam, the Netherlands, 24-29 April), 206-213.
Norman, D. A. (2013). The Design of Everyday Things, revised & expended ed. Basic Books, New York.
Novak, J. D., & Can˜as, A. J. (2006). The theory underlying concept maps and how to construct them. Technical Report IHMC Cmap Tools 2006-01. Retrieved June 25, 2019, Florida Institute for Human and Machine Cognition, from http://cmap.ihmcus/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf.
Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them (Technical Report IHMC CmapTools 2006-01 Rev 01-2008). Florida Institute for Human and Machine Cognition. Retrieved from http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge Uni-versity Press.
Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569–600.
Ruiz-Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38(2), 260–278.
Watson, M. K., Pelkey, J. G., Noyes, C., & Rodgers, M. O. (2015). Assessing conceptual knowledge using three concept map scoring methods. J. Eng. Educ., 105 (1), 118-146.
Wentzel, J., Müller, F., de Jong, N., & Van Gemert-Pijnen, J. (2016). Card sorting to evaluate the robustness of the information architecture of a protocol website. International journal of medical informatics, 86, 71 -81.
Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept-mapping techniques: Implications for scoring, interpretation, and use. Journal of Research in Science Teaching, 42, 166–184.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top