跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Putu Agus Yudisuda Indrakarna
研究生(外文):Putu Agus Yudisuda Indrakarna
論文名稱:Share-a-Ride Problem with Adjustable Compartment
論文名稱(外文):Share-a-Ride Problem with Adjustable Compartment
指導教授:喻奉天喻奉天引用關係
指導教授(外文):Vincent F. Yu
口試委員:郭伯勳Chun-Cheng Lin
口試委員(外文):Po-Hsun KuoChun-Cheng Lin
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:44
中文關鍵詞:Share-a-Ride Problem with Adjustable CompartmentShare-a-Ride ProblemAdjustable compartmentSimulated annealingSlack time
外文關鍵詞:Share-a-Ride Problem with Adjustable CompartmentShare-a-Ride ProblemAdjustable compartmentSimulated annealingSlack time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The Share-a-Ride Problem with Adjustable Compartment (SARPAC) is a study conducted with an aim to reduce traffic congestion and taxi wasted space when servicing a passenger. It is an extension of the Share-a-ride Problem (SARP) where both passenger and freight transport is handled by a single taxi network. SARPAC allows a taxi to adjust its compartment size within its lower and upper bounds while maintaining the same total capacity, allowing it to service more packages while also service one passenger at the same time. This will allow taxies to fully utilize their space to maximize profit. We propose a Simulated Annealing (SA) algorithm to solve SARPAC. Furthermore, we study the effect of delaying slack time mechanism on our algorithm’s computational time and solution quality by activating mutation neighbourhood at a later stage of temperature reduction. The performance of our algorithm is benchmarked against CPLEX for small instances and the SARP instances for large instances. The objective function of SARPAC is to maximize total profit obtained from serving passenger and parcel requests simultaneously. The proposed algorithm obtains optimal solutions for small instances with reasonable computational time. When compared to SARP result on large instances, SARPAC model obtains an average of 61.80% more profit.
The Share-a-Ride Problem with Adjustable Compartment (SARPAC) is a study conducted with an aim to reduce traffic congestion and taxi wasted space when servicing a passenger. It is an extension of the Share-a-ride Problem (SARP) where both passenger and freight transport is handled by a single taxi network. SARPAC allows a taxi to adjust its compartment size within its lower and upper bounds while maintaining the same total capacity, allowing it to service more packages while also service one passenger at the same time. This will allow taxies to fully utilize their space to maximize profit. We propose a Simulated Annealing (SA) algorithm to solve SARPAC. Furthermore, we study the effect of delaying slack time mechanism on our algorithm’s computational time and solution quality by activating mutation neighbourhood at a later stage of temperature reduction. The performance of our algorithm is benchmarked against CPLEX for small instances and the SARP instances for large instances. The objective function of SARPAC is to maximize total profit obtained from serving passenger and parcel requests simultaneously. The proposed algorithm obtains optimal solutions for small instances with reasonable computational time. When compared to SARP result on large instances, SARPAC model obtains an average of 61.80% more profit.
ABSTRACT ................................................................................................................................... ii
ACKNOWLEDGMENT ............................................................................................................. iii
TABLE OF CONTENTS ............................................................................................................ iv
LIST OF FIGURES ..................................................................................................................... vi
LIST OF TABLES ...................................................................................................................... vii
CHAPTER 1 INTRODUCTION ................................................................................................ 1
1.1 Background ...................................................................................................................... 1
1.2 Research Purpose ............................................................................................................. 4
1.3 Research Limitations ........................................................................................................ 4
1.4 Organization of Thesis ..................................................................................................... 5
CHAPTER 2 LITERATURE REVIEW ..................................................................................... 7
2.1 Dial-a-Ride Problem ........................................................................................................ 7
2.2 Share-a-Ride Problem ...................................................................................................... 8
2.3 Multi-compartment and Flexible Compartment Size VRP ............................................ 10
CHAPTER 3 MODEL DEVELOPMENT............................................................................... 12
3.1 Problem Definition ......................................................................................................... 12
3.2 Mathematical Model ...................................................................................................... 13
CHAPTER 4 SOLUTION METHODOLOGY ........................................................................ 19
4.1 Solution Representation ................................................................................................. 19
4.2 Initial Solution ................................................................................................................ 20
4.3 Neighborhood Search Mechanism ................................................................................. 20
4.4 Time Slack Strategy ....................................................................................................... 22
4.5 Simulated Annealing Algorithm .................................................................................... 24
CHAPTER 5 COMPUTATIONAL STUDY ............................................................................ 27
5.1 Benchmark Instances...................................................................................................... 27
5.2 Parameter Settings .......................................................................................................... 28
5.3 Algorithm Verification ................................................................................................... 35
5.4 Comparison Between SARP and SARPAC ................................................................... 38
CHAPTER 6 CONCLUSION AND FUTURE RESEARCH ................................................ 41
6.1 Conclusion ...................................................................................................................... 41
6.2 Future Research .............................................................................................................. 42
REFERENCES ............................................................................................................................ 43
Chen, W., Mes, M., Schutten, M., & Quint, J. (2019). A ride-sharing problem with meeting points and return restrictions. Transportation science.
Cordeau, J.-F., & Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6), 579-594.
Cordeau, J.-F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of operations research, 153(1), 29-46.
El Fallahi, A., Prins, C., & Calvo, R. W. (2008). A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Computers & Operations Research, 35(5), 1725-1741.
Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E., Wang, X., & Koenig, S. (2013). Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: Methodological, 57, 28-46.
Henke, T., Speranza, M. G., & Wäscher, G. (2015). The multi-compartment vehicle routing problem with flexible compartment sizes. European Journal of Operational Research, 246(3), 730-743.
Jaw, J.-J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. (1986). A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part B: Methodological, 20(3), 243-257.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The share-a-ride problem: People and parcels sharing taxis. European Journal of Operational Research, 238(1), 31-40.
Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neighborhood search heuristic for the share-a-ride problem. Computers & Operations Research, 66, 170-180.
Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The Share-a-Ride problem with stochastic travel times and stochastic delivery locations. Transportation Research Part C: Emerging Technologies, 67, 95-108.
44
Lokhandwala, M., & Cai, H. (2018). Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC. Transportation Research Part C: Emerging Technologies, 97, 45-60.
Masmoudi, M. A., Hosny, M., Demir, E., Genikomsakis, K. N., & Cheikhrouhou, N. (2018). The dial-a-ride problem with electric vehicles and battery swapping stations. Transportation Research Part E: Logistics and Transportation Review, 118, 392-420.
Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2010). Variable neighborhood search for the dial-a-ride problem. Computers & Operations Research, 37(6), 1129-1138.
Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transportation science, 14(2), 130-154.
Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35(2), 254-265.
Stiglic, M., Agatz, N., Savelsbergh, M., & Gradisar, M. (2018). Enhancing urban mobility: Integrating ride-sharing and public transit. Computers & Operations Research, 90, 12-21.
Tellez, O., Vercraene, S., Lehuédé, F., Péton, O., & Monteiro, T. (2018). The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity. Transportation Research Part C: Emerging Technologies, 91, 99-123.
Yu, V. F., Redi, A. P., Hidayat, Y. A., & Wibowo, O. J. (2017). A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing, 53, 119-132.
Yu, V. F., Purwanti, S. S., Redi, A. P., Lu, C.-C., Suprayogi, S., & Jewpanya, P. (2018). Simulated annealing heuristic for the general share-a-ride problem. Engineering Optimization, 50(7), 1178-1197.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top