|
[1]“One Big Hot MEMS Vendor & 17 Little Ones, State of global MEMS industry 2018”. [2]“勞工作業場所容許暴露標準”全國法規資料庫. [3]“碳的自述”科技大觀園. [4]“富勒烯”維基百科. [5]“奈米碳管”維基百科. [6]“石墨烯”維基百科. [7]Tsutomu Shinagawa, Athavan Nadarajah, and Rolf Könenkamp “All-solution-processed CIS solar cells based on electrodeposited ZnO nanopillars” IEEE.15-18 Aug. 2011. [8]M. Angelov, R. Goldhahn, G. Gobsch, M. Kanis, and S. Fiechter “Structural and optical properties of CuInS2 bulk crystals” Journal of Applied Physics 75, 5361 (1998). [9] A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998). [10]Xuan Dong, Jiejun Ren, Tianrong Li, and Yuhua Wang “Synthesis, characterization and application of red-emitting CuInS2/ZnS quantum dots for warm white light-emitting diodes” Dyes and Pigments, Volume 165, Pages 273-278, June 2019. [11]Jiaxin Zhang, Xuerong Zheng, Limin Liang, Caichi Liu, Qiuyan Hao, Hongjian Chen, and Hui Liu “Phase-controlled CuInS2 nanocrystals synthesized by an ambient pressure polylol-based solution process and their photovoltaic application” Materials Letters, Volume 160, Pages 96-100, 1 December 2015. [12]Lijia Wang, Wenhong Gu, Pengtao Sheng, Zhiwei Zhang, Bing Zhang, and Qingyun Cai “A label-free cytochrome c photoelectrochemical aptasensor based on CdS/CuInS2/Au/TiO2 nanotubes” Sensors and Actuators B: Chemical, Volume 281, Pages 1088-1096, 15 February 2019. [13]Alexandru Enesca, Yuichi Yamaguchi, Chiaki Terashima, Akira Fujishima, Kazuya Nakata, and Anca Duta “Enhanced UV–Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination” Journal of Catalysis, Volume 350, Pages 174-181 June 2017. [14] Xunzhong Shang, Zhiqiang Wang, Mingkai Li, Lei Zhang, Jingang Fang, Jiali Tai, and Yunbin He “A numerical simulation study of CuInS2 solar cells” Thin Solid Films, Volume 550, Pages 649-653, 1 January 2014. [15]余飛鵬“應用於紫外光偵測器之金屬氧化物材料成長與特性研究”材料與工程學系,中興大學, 2015. [16]Tsutomu Shinagawa, Athavan Nadarajah, and Rolf Könenkamp “All-solution-processed CIS solar cells based on electrodeposited ZnO nanopillars” IEEE.15-18 Aug. 2011. [17]M. Angelov, R. Goldhahn, G. Gobsch, M. Kanis, and S. Fiechter “Structural and optical properties of CuInS2 bulk crystals” Journal of Applied Physics 75, 5361 (1998). [18]A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998). [19]A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998). [20]“貝爾實驗室”維基百科 [21]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page 1308, 2008. [22]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide” ACS Publications 80 (1958) 1339-1339. [23]Y. Xu et al., and J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856. [24]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542. [25]US Defence Logistics Agency. [26]R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483. [27]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide”, ACS Publications 80 (1958) 1339-1339. [28]Y. Xu et al., and J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856. [29]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai. “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542. [30]US Defence Logistics Agency. [31]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau “Superior thermal conductivity of single-layer graphene” Nano Lett, 8,902-907(2008). [32]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer “Ultrahigh electron mobility in suspended graphene” Solid State Commun, 146,351-355 (2008). [33]Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, Byung Hee Hong “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature 457, 706-710, (2009). [34]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page1308, (2008). [35]A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh “Graphene based strain sensors: A comparative study on graphene and its derivatives” Applied Surface Science, Volume 448, Pages 71-77, 1 August 2018. [36]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page 1308, (2008). [37]B. C. Brodie et al., Philos. Trans. R. Soc. London “On the atomic weight of graphite” Journal Article 149 (1959) 249. [38]W.S Hummers, R.E Offeman, J. Am. Chem. Soc. “Preparation of Graphitic Oxide” ACS Publications 80 (1958) 1339-1339. [39]Y. Xu et al., J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856. [40]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai. “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542. [41]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide”, ACS Publications 80 (1958) 1339-1339. [42]A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh “Graphene based strain sensors: A comparative study on graphene and its derivatives” Applied Surface Science, Volume 448, Pages 71-77, 1 August 2018. [43]Yu Zhang, Jiale Du, Shuai Tang, Pei Liu, Shaozhi Deng, Jun Chen, Ningsheng Xu “Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology” Nanotechnology 23 015202 (6pp)(2012). [44]陳一誠“金屬氧化物半導體行氣體感測器”材料與社會, 68, pp.62-66, 1992. [45]黃炳照“固態電解質電化學氣體感測器”Chemistry(The Chinese Chem. Soc., Taipei), 59, pp.207-217, 2001. [46]“惠斯登電橋”維基百科 [47]C. sonics, A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics Symposium Proc., pp.549-554, 1988. [48]A. D’Amico, A. Plama, and E. Verona “Surface acoustic wave hydrogen sensor” Sens. Acuatros, 3, pp.31-39, 1982. [49]張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄“表面聲波氣體感測器之研製與應用” Chemistry (The Chinese Chem. Soc., Taipei) December, pp.487-498, 2007. [50]吳泉毅,楊宗燁,林鴻明 “奈米半導體材料之氣體感測性質”. [51]周瑞福 “氣體感測器原理與應用”. [52]“氣體感測元件之新興應用”材料世界網. [53]“氣體感測器-打造電子鼻未來應用情境”經濟部技術處. [54]“氨氣”維基百科. [55]Madhav Gautam, and Ahalapitiya H. Jayatissa “Gas sensing properties of graphene synthesized by chemical vapor deposition” Materials Science and Engineering: C, Volume 31, Issue 7, Pages 1405-1411, 10 October 2011. [56]G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim “Graphene-based nitrogen dioxide gas sensors” Current Applied Physics, Volume 10, Issue 4, Pages 1002-1004, July 2010. [57]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov “Detection of individual gas molecules adsorbed on graphene” Nature Materials volume 6, pages 652–655 (2007). [58]Wenjing Yuan, and Gaoquan Shi “Graphene-based gas sensors” Journal of Materials Chemistry A, vol. 1, pp. 10078-10091, 2013. [59] Tao Wang, Da Huang, Zhi Yang, Shusheng Xu, Guili He, Xiaolin Li, Nantao Hu, Guilin Yin, Dannong He, and Liying Zhang “A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications” Nano-Micro Letters, Volume 8, Issue 2, pp. 95–119, April 2016. [60]Fatemeh Ahmadi Tabr, Farah Salehiravesh, Hossein Adelnia, Jaber Nasrollah Gavgani, and Mojtaba Mahyari “Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature” Talanta, Volume 197, Pages 457-46415, May 2019. [61]國立台灣科技大學貴儀中心JEOL6500場發射掃描式電子顯微鏡. [62]國立台灣大學貴儀中心工學院場發射槍穿透式電子顯微鏡附加能量散佈分析儀. [63]國立台灣科技大學X光繞射儀實驗室. [64]“拉曼效應”維基百科. [65]“拉曼光譜學”維基百科. [66]國立台灣科技大學材料科學與工程系顯微拉曼光譜儀. [67]“螢光光譜”維基百科. [68]國立台灣科技大學電子所半導體量測實驗室光激發螢光頻譜儀. [69]“紫外-可見光分光光度法”維基百科. [70]國立台灣科技大學材料科學與工程系紫外光-可見光/近紅外光分析量測系統. [71]“原子力顯微鏡”維基百科. [72]國立台灣科技大學材料科學與工程系原子力顯微鏡. [73]Tong Zhao, Zhibo Liu, Xing Xin, Hui-Ming Cheng, and Wencai Ren “Defective graphene as a high-efficiency Raman enhancement substrate” Journal of Materials Science & Technology, Available online 11 May 2019. [74]Jingang Fang, Mingkai Li, Xunzhong Shang, and Yunbin He “Annealing Effects on CuInS2 Thin Films Grown on Glass Substrates by Using Pulsed Laser Deposition” Journal of the Korean Physical Society, Vol. 64, No. 3, pp.410∼414, February 2014. [75]Madhav Gautam, and Ahalapitiya H. Jayatissa “Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles” Solid-State Electronics, Volume 78, Pages 159-165, December 2012. [76]Yotsarayuth Seekaew, Shongpun Lokavee, Ditsayut Phokharatkul, Anurat Wisitsoraat, Teerakiat Kerdcharoen, and Chatchawal Wongchoosuk “Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection” Organic Electronics, Volume 15, Issue 11, Pages 2971-2981, November 2014. [77]S.M. Jebreiil Khadem, Y. Abdi, S. Darbari, and F. Ostovari “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors” Current Applied Physics, Volume 14, Issue 11, Pages 1498-1503, November 2014. [78]Hui Song, Xin Li, Ping Cui, Shixi Guo, Weihua Liu, and Xiaoli Wang “Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor” Diamond and Related Materials, Volume 73, Pages 56-61, March 2017. [79]Jin Wu, Shuanglong Feng, Zhong Li, Kai Tao, Jin Chu, Jianmin Miao, and Leslie K. Norford “Boosted sensitivity of graphene gas sensor via nanoporous thin film structures” Sensors and Actuators B: Chemical, Volume 255, Part 2, Pages 1805-1813, February 2018. [80]Adhimoorthy Saravanan, Bohr-Ran Huang, and Deepa Kathiravan “Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment” Applied Surface Science, Volume 457, Pages 367-375, 1 November 2018. [81]Jian Zhang, Die Hu, Shouqin Tian, Ziyu Qin, Dawen Zeng, and Changsheng Xie “CuInS2 QDs decorated ring-like NiO for significantly enhanced room-temperature NO2 sensing performances via effective interfacial charge transfer” Sensors and Actuators B: Chemical, Volume 256, Pages 1001-1010, March 2018.
|