(18.204.2.190) 您好!臺灣時間:2021/04/22 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:時嘉汶
研究生(外文):Chia-Wen Shr
論文名稱:二硫化銅銦量子點-石墨烯複合奈米結構及其氨氣響應特性分析
論文名稱(外文):Cu-In-S2 quantum dots-Graphene hybrid nanostructures for their highly enhanced ammonia gas sensing properties
指導教授:黃柏仁黃柏仁引用關係
指導教授(外文):Bohr-Ran Huang
口試委員:張家耀章詠湟
口試委員(外文):Jia-Yaw ChangYung-Huang Chang
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:155
中文關鍵詞:石墨烯電漿後處理二硫化銅銦量子點LED照明氨氣感測器
外文關鍵詞:GraphenePlasma post-treatmentCuInS2 quantum dotsLED illuminated gas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為二部分,第一部分探討石墨烯堆疊不同層數於氮化矽基板結構之氨氣感測器,並進行物性及電性之分析;第二部分探討二硫化銅銦量子點-石墨烯複合奈米結構之氨氣感測器,並進行物性及電性之分析。

本研究第一部分重點是使用不同層數石墨烯以及電漿後處理石墨烯之氨氣感測器,研究發現使用電漿後處理會使得石墨烯表面之比表面積增加,增強其氨氣感測特性,與石墨烯氨氣感測器(2.98%)相比,基於電漿後處理石墨烯氨氣感測器顯示出極高的氨氣響應特性(26.06%)。主要原因是透過電漿後處理之石墨烯誘導了更多的活性位以吸附更多的氧氣。

在第二部分中,首次使用二硫化銅銦量子點-石墨烯複合奈米結構,並研究其複合結構及其氨氣感測特性。透過複合石墨烯,本研究發現二硫化銅銦量子點的氨氣感測特性,並利用二硫化銅銦量子點的光特性使得基於二硫化銅銦量子點-石墨烯複合奈米結構氨氣感測器具有23.65%優異的氨氣感測特性,其高於二硫化銅銦量子點氨氣感測器(0.87%)以及石墨烯氨氣感測器(2.98%)。主要原因是二硫化銅銦量子點-石墨烯複合奈米結構具有優異的複合性能以及結構表面缺陷形成的氧空位,實現了高靈敏度的氨氣響應特性。
Highly sensitive within low threshold limit detection of ammonia (NH3) at room temperature is essential for appropriate environmental monitoring because NH3 is dangerous to the environment when it exceeds 25ppm limit in air. Since NH3 could be fuel replacement option and several uses in agriculture and industrial applications thus monitoring ammonia is extremely important to avoid any health hazards. For that reason, it is highly important to fabricate highly sensitive multifunctional NH3 sensors that can sense low ppm of NH3. It’s also important to sense the flammable NH3 in low operation temperature with stability for lower power consumption. In this context, graphene (Gr) based materials are highly promising multifunctional nanomaterial in several applications, especially have demonstrated noteworthy progress in gas sensing applications. Herein, we report highly enhanced NH3-gas-sensing properties of plasma post treated graphene materials and subsequently the graphene and CuInS2 were combined for the first time to achieve high NH3-gas sensitivity in room temperature.
First section of this study focus on the fabrication of NH3 gas sensors using different layer Gr with plasma post-treatment (Gr-plasma post-treatment). The systematic investigations were revealed that using plasma post-treatment to increase the specific surface area of Gr, strongly influence the gas sensing performance. The Gr with plasma post-treatment based gas sensor shows superb enhancement in ammonia sensitivity of 26.06% comparing to Gr gas sensor (2.98%). It is believed that the plasma post-treatment onto Gr induces more active sites for the adsorption of O2.
In the second section, for the first time, we develop novel nanostructure using CuInS2-Gr composite structures and studied their structural and gas sensing properties. For the first time the gas sensing behavior of CuInS2 is discovered with hybridization of Gr. Interestingly, CuInS2-Gr hybrid composites possess excellent gas sensing response of 23.65%, which is overwhelmingly higher than bare CuInS2 (0.87%), bare Gr and CuInS2-Gr (4.30%). The highly enhanced NH3 sensing properties achieved due to the excellent hybridization properties and formation of structural oxidized surface defects in CuInS2-Gr nanohybrids. These results indicate the noteworthy progress for the fabrication of new generation NH3 sensors.
目錄
中文摘要 I
英文摘要 II
致謝 III
目錄 V
圖目錄 X
表目錄 XVIII

第一章 緒論 1
1.1 前言 1
1.2 研究動機 3

第二章 文獻探討 4
2.1 二硫化銅銦材料特性簡介 4
2.1.1三元化合物半導體特性 4
2.1.2二硫化銅銦晶體結構特性 4
2.1.3二硫化銅銦之製備方法 5
2.2 石墨烯特性簡介 9
2.2.1石墨烯的基本性質與結構 9
2.2.2石墨烯成長機制與製備方法 11
2.3 氣體感測器介紹 17
2.3.1金屬氧化物半導體型 17
2.3.2電化學固態電解質型 18
2.3.3觸媒燃燒型 18
2.3.4表面聲波型 19
2.4 石墨烯與氨氣感測 21

第三章 實驗方法 22
3.1 實驗設計與流程 22
3.2 製備之材料介紹 24
3.3 基板清洗 25
3.4 水相溶液法(Aqueous solution-processed)合成二硫化銅銦量子點 26
3.5 化學氣相沉積法成長石墨烯 27
3.5.1 銅箔前處理 27
3.5.2 石墨烯成長參數 28
3.6 石墨烯轉移之基本步驟 30
3.7 儀器設備與材料分析方法 33
3.7.1 場發射掃描式電子顯微鏡(FE-SEM) 33
3.7.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 34
3.7.3 場發射穿透式電子顯微鏡(FE-TEM) 34
3.7.4 X射線繞射儀(X-ray diffraction,XRD) 35
3.7.5 拉曼光譜儀(Raman spectrum) 36
3.7.6光激發螢光光譜儀(Photoluminescence,PL) 37
3.7.7紫外光-可見光/近紅外光分析儀(Ultraviolet-Visible/NIR spectroscopy,UV-Vis/NIR) 38
3.7.8原子力顯微鏡(Atomic force microscope, AFM) 39
3.7.9高真空量測系統(Gas sensor,GS) 40

第四章 石墨烯堆疊不同層數於氮化矽基板結構之氨氣感測 41
4.1 氫電漿後處理單層石墨烯轉移至氮化矽基板之製作及特性分析 41
4.1.1 單層石墨烯/氮化矽基板之表面型態分析 41
4.1.2 不同瓦數及時間氫電漿後處理於單層石墨烯/氮化矽基板之表面型態分析 42
4.1.3 拉曼光譜儀分析 46
4.1.4 光激發螢光頻譜儀分析 48
4.1.5 氫電漿後處理於單層石墨烯/氮化矽基板之氨氣感測分析 49
4.2 氫電漿後處理雙層石墨烯轉移至氮化矽基板之製作及特性分析 53
4.2.1 雙層石墨烯/氮化矽基板之表面型態分析 53
4.2.2 不同瓦數及時間氫電漿後處理於雙層石墨烯/氮化矽基板之表面型態分析 54
4.2.3 拉曼光譜儀分析 58
4.2.4 光激發螢光頻譜儀分析 60
4.2.5氫電漿後處理於雙層石墨烯/氮化矽基板之氨氣感測分析 61
4.3 氧電漿後處理雙層石墨烯轉移至氮化矽基板之製作及特性分析 65
4.3.1 雙層石墨烯/氮化矽基板之表面型態分析 65
4.3.2 不同時間氧電漿後處理於雙層石墨烯/氮化矽基板之表面型態分析 66
4.3.3 拉曼光譜儀分析 69
4.3.4 光激發螢光頻譜儀分析 71
4.3.5 氧電漿後處理於雙層石墨烯/氮化矽基板之氨氣感測分析 72
4.4 兩次氫電漿後處理雙層石墨烯轉移至氮化矽基板之製作及特性分析 75
4.4.1 雙層石墨烯/氮化矽基板之表面型態分析 75
4.4.2 不同時間兩次氫電漿後處理於雙層石墨烯/氮化矽基板之表面型態分析 76
4.4.3 拉曼光譜儀分析 79
4.4.4 光激發螢光頻譜儀分析 81
4.4.5 兩次氫電漿後處理於雙層石墨烯/氮化矽基板之氨氣感測分析 82

第五章 二硫化銅銦量子點-石墨烯複合奈米結構之氨氣感測 87
5.1 不同滴量二硫化銅銦量子點之特性分析 87
5.1.1 不同滴量二硫化銅銦/氮化矽基板之表面型態分析 87
5.1.2 X-ray繞射儀分析 89
5.1.3 拉曼光譜儀分析 90
5.1.4 光激發螢光頻譜儀分析 91
5.1.5 紫外-可見光分光分析 92
5.1.6 二硫化銅銦之氨氣感測分析 93
5.2 不同轉速二硫化銅銦量子點之特性分析 95
5.2.1 不同轉速二硫化銅銦/氮化矽基板之表面型態分析 95
5.2.2 X-ray繞射儀分析 97
5.2.3 拉曼光譜儀分析 98
5.2.4 光激發螢光頻譜儀分析 99
5.2.5 紫外-可見光分析 100
5.2.6 二硫化銅銦之氨氣感測分析 101
5.3 二硫化銅銦量子點-石墨烯複合奈米結構之特性分析 105
5.3.1 二硫化銅銦-石墨烯複合奈米結構之表面型態分析 105
5.3.2 二硫化銅銦-石墨烯複合奈米結構之場發射穿透式顯微鏡分析 108
5.3.3 X-ray繞射儀分析 109
5.3.4 拉曼光譜儀分析 110
5.3.5 光激發螢光頻譜儀分析 112
5.3.6 紫外-可見光分光分析 113
5.3.7 二硫化銅銦-石墨烯複合奈米結構之氨氣感測分析 114
5.3.8 不同光源發光二極體對於二硫化銅銦-石墨烯複合奈米結構之氨氣感測分析 118

第六章 結論與未來展望 128
6.1 結論 128
6.2 未來展望 131

參考文獻 132
[1]“One Big Hot MEMS Vendor & 17 Little Ones, State of global MEMS industry 2018”.
[2]“勞工作業場所容許暴露標準”全國法規資料庫.
[3]“碳的自述”科技大觀園.
[4]“富勒烯”維基百科.
[5]“奈米碳管”維基百科.
[6]“石墨烯”維基百科.
[7]Tsutomu Shinagawa, Athavan Nadarajah, and Rolf Könenkamp “All-solution-processed CIS solar cells based on electrodeposited ZnO nanopillars” IEEE.15-18 Aug. 2011.
[8]M. Angelov, R. Goldhahn, G. Gobsch, M. Kanis, and S. Fiechter “Structural and optical properties of CuInS2 bulk crystals” Journal of Applied Physics 75, 5361 (1998).
[9] A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998).
[10]Xuan Dong, Jiejun Ren, Tianrong Li, and Yuhua Wang “Synthesis, characterization and application of red-emitting CuInS2/ZnS quantum dots for warm white light-emitting diodes” Dyes and Pigments, Volume 165, Pages 273-278, June 2019.
[11]Jiaxin Zhang, Xuerong Zheng, Limin Liang, Caichi Liu, Qiuyan Hao, Hongjian Chen, and Hui Liu “Phase-controlled CuInS2 nanocrystals synthesized by an ambient pressure polylol-based solution process and their photovoltaic application” Materials Letters, Volume 160, Pages 96-100, 1 December 2015.
[12]Lijia Wang, Wenhong Gu, Pengtao Sheng, Zhiwei Zhang, Bing Zhang, and Qingyun Cai “A label-free cytochrome c photoelectrochemical aptasensor based on CdS/CuInS2/Au/TiO2 nanotubes” Sensors and Actuators B: Chemical, Volume 281, Pages 1088-1096, 15 February 2019.
[13]Alexandru Enesca, Yuichi Yamaguchi, Chiaki Terashima, Akira Fujishima, Kazuya Nakata, and Anca Duta “Enhanced UV–Vis photocatalytic performance of the CuInS2/TiO2/SnO2 hetero-structure for air decontamination” Journal of Catalysis, Volume 350, Pages 174-181 June 2017.
[14] Xunzhong Shang, Zhiqiang Wang, Mingkai Li, Lei Zhang, Jingang Fang, Jiali Tai, and Yunbin He “A numerical simulation study of CuInS2 solar cells” Thin Solid Films, Volume 550, Pages 649-653, 1 January 2014.
[15]余飛鵬“應用於紫外光偵測器之金屬氧化物材料成長與特性研究”材料與工程學系,中興大學, 2015.
[16]Tsutomu Shinagawa, Athavan Nadarajah, and Rolf Könenkamp “All-solution-processed CIS solar cells based on electrodeposited ZnO nanopillars” IEEE.15-18 Aug. 2011.
[17]M. Angelov, R. Goldhahn, G. Gobsch, M. Kanis, and S. Fiechter “Structural and optical properties of CuInS2 bulk crystals” Journal of Applied Physics 75, 5361 (1998).
[18]A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998).
[19]A. Rockett and R. W. Birkmire “CuInSe2 for photovoltaic applications” Journal of Applied Physics 70, R81 (1998).
[20]“貝爾實驗室”維基百科
[21]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page 1308, 2008.
[22]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide” ACS Publications 80 (1958) 1339-1339.
[23]Y. Xu et al., and J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856.
[24]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542.
[25]US Defence Logistics Agency.
[26]R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483.
[27]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide”, ACS Publications 80 (1958) 1339-1339.
[28]Y. Xu et al., and J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856.
[29]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai. “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542.
[30]US Defence Logistics Agency.
[31]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau “Superior thermal conductivity of single-layer graphene” Nano Lett, 8,902-907(2008).
[32]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer “Ultrahigh electron mobility in suspended graphene” Solid State Commun, 146,351-355 (2008).
[33]Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, Byung Hee Hong “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature 457, 706-710, (2009).
[34]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page1308, (2008).
[35]A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh “Graphene based strain sensors: A comparative study on graphene and its derivatives” Applied Surface Science, Volume 448, Pages 71-77, 1 August 2018.
[36]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim “Fine Structure Constant Defines Visual Transparency of Graphene” Science, Vol. 320 no. 5881, page 1308, (2008).
[37]B. C. Brodie et al., Philos. Trans. R. Soc. London “On the atomic weight of graphite” Journal Article 149 (1959) 249.
[38]W.S Hummers, R.E Offeman, J. Am. Chem. Soc. “Preparation of Graphitic Oxide” ACS Publications 80 (1958) 1339-1339.
[39]Y. Xu et al., J. Am. Chem. Soc. “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets” ACS Publications 130 (2008) 5856.
[40]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai. “Highly conducting graphene sheets and Langmuir-Blodgett films” Nature Nanotech 3 (2008) 538-542.
[41]W.S Hummers, R.E Offeman, and J. Am. Chem. Soc. “Preparation of Graphitic Oxide”, ACS Publications 80 (1958) 1339-1339.
[42]A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh “Graphene based strain sensors: A comparative study on graphene and its derivatives” Applied Surface Science, Volume 448, Pages 71-77, 1 August 2018.
[43]Yu Zhang, Jiale Du, Shuai Tang, Pei Liu, Shaozhi Deng, Jun Chen, Ningsheng Xu “Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology” Nanotechnology 23 015202 (6pp)(2012).
[44]陳一誠“金屬氧化物半導體行氣體感測器”材料與社會, 68, pp.62-66, 1992.
[45]黃炳照“固態電解質電化學氣體感測器”Chemistry(The Chinese Chem. Soc., Taipei), 59, pp.207-217, 2001.
[46]“惠斯登電橋”維基百科
[47]C. sonics, A. D’Amico, P. Verardi, and E. Verona, 1998 IEEE Ultrasonics Symposium Proc., pp.549-554, 1988.
[48]A. D’Amico, A. Plama, and E. Verona “Surface acoustic wave hydrogen sensor” Sens. Acuatros, 3, pp.31-39, 1982.
[49]張宏維,周鈺禎,蔡顯仁,徐慧萍,施正雄“表面聲波氣體感測器之研製與應用” Chemistry (The Chinese Chem. Soc., Taipei) December, pp.487-498, 2007.
[50]吳泉毅,楊宗燁,林鴻明 “奈米半導體材料之氣體感測性質”.
[51]周瑞福 “氣體感測器原理與應用”.
[52]“氣體感測元件之新興應用”材料世界網.
[53]“氣體感測器-打造電子鼻未來應用情境”經濟部技術處.
[54]“氨氣”維基百科.
[55]Madhav Gautam, and Ahalapitiya H. Jayatissa “Gas sensing properties of graphene synthesized by chemical vapor deposition” Materials Science and Engineering: C, Volume 31, Issue 7, Pages 1405-1411, 10 October 2011.
[56]G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim “Graphene-based nitrogen dioxide gas sensors” Current Applied Physics, Volume 10, Issue 4, Pages 1002-1004, July 2010.
[57]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov “Detection of individual gas molecules adsorbed on graphene” Nature Materials volume 6, pages 652–655 (2007).
[58]Wenjing Yuan, and Gaoquan Shi “Graphene-based gas sensors” Journal of Materials Chemistry A, vol. 1, pp. 10078-10091, 2013.
[59] Tao Wang, Da Huang, Zhi Yang, Shusheng Xu, Guili He, Xiaolin Li, Nantao Hu, Guilin Yin, Dannong He, and Liying Zhang “A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications” Nano-Micro Letters, Volume 8, Issue 2, pp. 95–119, April 2016.
[60]Fatemeh Ahmadi Tabr, Farah Salehiravesh, Hossein Adelnia, Jaber Nasrollah Gavgani, and Mojtaba Mahyari “Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature” Talanta, Volume 197, Pages 457-46415, May 2019.
[61]國立台灣科技大學貴儀中心JEOL6500場發射掃描式電子顯微鏡.
[62]國立台灣大學貴儀中心工學院場發射槍穿透式電子顯微鏡附加能量散佈分析儀.
[63]國立台灣科技大學X光繞射儀實驗室.
[64]“拉曼效應”維基百科.
[65]“拉曼光譜學”維基百科.
[66]國立台灣科技大學材料科學與工程系顯微拉曼光譜儀.
[67]“螢光光譜”維基百科.
[68]國立台灣科技大學電子所半導體量測實驗室光激發螢光頻譜儀.
[69]“紫外-可見光分光光度法”維基百科.
[70]國立台灣科技大學材料科學與工程系紫外光-可見光/近紅外光分析量測系統.
[71]“原子力顯微鏡”維基百科.
[72]國立台灣科技大學材料科學與工程系原子力顯微鏡.
[73]Tong Zhao, Zhibo Liu, Xing Xin, Hui-Ming Cheng, and Wencai Ren “Defective graphene as a high-efficiency Raman enhancement substrate” Journal of Materials Science & Technology, Available online 11 May 2019.
[74]Jingang Fang, Mingkai Li, Xunzhong Shang, and Yunbin He “Annealing Effects on CuInS2 Thin Films Grown on Glass Substrates by Using Pulsed Laser Deposition” Journal of the Korean Physical Society, Vol. 64, No. 3, pp.410∼414, February 2014.
[75]Madhav Gautam, and Ahalapitiya H. Jayatissa “Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles” Solid-State Electronics, Volume 78, Pages 159-165, December 2012.
[76]Yotsarayuth Seekaew, Shongpun Lokavee, Ditsayut Phokharatkul, Anurat Wisitsoraat, Teerakiat Kerdcharoen, and Chatchawal Wongchoosuk “Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection” Organic Electronics, Volume 15, Issue 11, Pages 2971-2981, November 2014.
[77]S.M. Jebreiil Khadem, Y. Abdi, S. Darbari, and F. Ostovari “Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors” Current Applied Physics, Volume 14, Issue 11, Pages 1498-1503, November 2014.
[78]Hui Song, Xin Li, Ping Cui, Shixi Guo, Weihua Liu, and Xiaoli Wang “Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor” Diamond and Related Materials, Volume 73, Pages 56-61, March 2017.
[79]Jin Wu, Shuanglong Feng, Zhong Li, Kai Tao, Jin Chu, Jianmin Miao, and Leslie K. Norford “Boosted sensitivity of graphene gas sensor via nanoporous thin film structures” Sensors and Actuators B: Chemical, Volume 255, Part 2, Pages 1805-1813, February 2018.
[80]Adhimoorthy Saravanan, Bohr-Ran Huang, and Deepa Kathiravan “Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment” Applied Surface Science, Volume 457, Pages 367-375, 1 November 2018.
[81]Jian Zhang, Die Hu, Shouqin Tian, Ziyu Qin, Dawen Zeng, and Changsheng Xie “CuInS2 QDs decorated ring-like NiO for significantly enhanced room-temperature NO2 sensing performances via effective interfacial charge transfer” Sensors and Actuators B: Chemical, Volume 256, Pages 1001-1010, March 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔