參考文獻
[1]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
[2]. 高瞻自然科學教學平台,x射線光電子能譜儀
http://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[3]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
[4]. Lin, C. R., et al. Development of high-performance UV detector using nanocrystalline diamond thin film. International Journal of Photoenergy (2014) 2014.
[5]. SuneetArora, V.D. Vankar, Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness Thin Solid Films (2006) 1963.
[6]. 曾永華、陳柏穎、鄭宇明、游銘永,”人造鑽石的合成及應用”,科學發展497期,一百零三年五月。
[7]. S.Matusumoto,Y.Sato,M.Kamo,and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys.(1992) 1562
[8]. Krauss, A. R., et al. "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices." Diamond and Related Materials 10.11(2001): 1952-1961.
[9]. Sankaran, K. J., et al. "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45.36 (2012): 365303.
[10]. KamatchiJothiramalingamSankaran Bohr‐Ran Huang AdhimoorthySaravananDivinahManoharanNyan‐Hwa Tai I.‐Nan Lin﹐’Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias‐Enhanced Microwave N2/CH4‐Plasma Chemical Vapor Deposition’
[11]. S.Matusumoto,Y.Sato,M.Kamo,and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys.(1992) 1562
[12]. B. C. Brodie et al., Philos. Trans. R. Soc. London, 149, 249 (1959)
[13]. Brodie, B. Note surun Nouveau Procede pour la Purification et la Pesagregation du Graphite. Ann. Chim. Phys.1855, 45, 351–353.
[14]. H. He et al., Chem. Phys. Lett., 287, 53 (1998)
[15]. M. Chhowalla et al., Nature Chem. (2010)
[16]. J. Ito et al., J. Appl. Phys., 103, 113712 (2008)
[17]. M. Chhowalla et al., Nature Chem. (2010)
[18]. J. William et al., J. Am. Chem. Soc., 80, 1339 (1958)
[19]. Y. Xu et al., J. Am. Chem. Soc., 130, 5856 (2008)
[20]. G. Eda et al., Adv. Mater.,22,2392 (2010)
[21]. W.F. Chen, L.F. Yan, P.R. Bangal. Carbon, 48 (2010), p. 1146-1152
[22]. D.H. Du, P.C. Li, J.Y. Ouyang. ACS Appl. Mater. Interfaces, 7 (2015), p. 26952-26958
[23]. G. Eda et al., Nature Nanotech., 3, 210 (2008)
[24]. http://newsletter.sinica.edu.tw/file/file/61/6133.pdf.
[25]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,H.L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146 (2008)351-355.
[26]. WufengChen. et al, CarbonVolume 48, Issue 4, April 2010, Pages 1146-1152.
[27]. High-Pulse Power needs spur demand for Supercapacitor ,Electronic Engineering Times (April 16 2001), p99, p108, p110.
[28]. H. A. Andreas, B. E. Conway, “Examination of the double-layer capacitanceof an high specific-area C-cloth electrodes as titrated from acidicto alkaline pHs”, ElectrochimicaActa, 51, 6510-6520 (2006).
[29]. I. Tanahashi, A. Yoshida, A. Nishino, “Preparation and Characterizationof Activated Carbon Tablets for Electric Double Layer Capacitors”,Bulletin of the Chemical Society of Japan, 63, 2755-2758 (1990).
[30]. XiaolanPeng, WenYuan, JiaxiuZou, BingWang, WenyuanHu, YingXiong, Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performancesElectrochimica Acta, Volume 257, 10 December 2017, Pages 504-509
[31]. R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483.
[32]. F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, S. Sang, “In situ fabrication ofnickel aluminum-layered double hydroxide nanosheets/hollow carbonnanofibers composites as a novel electrode material for supercapacitors”,
[33]. Journal of Power Sources, 267, 188-196 (2014).
[34]. MajidMirzaee, Changiz, Dehghanian, KazemSabetBokati, One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor
[35]. MajidMirzaee, Changiz, Dehghanian, KazemSabet Bokati,One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor
[36]. F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, S. Sang, “In situ fabrication ofnickel aluminum-layered double hydroxide nanosheets/hollow carbonnanofibers composites as a novel electrode material for supercapacitors”,Journal of Power Sources, 267, 188-196 (2014).
[37]. E. Conway, “Electrochemical Super capacitor,” Kluwer-Plenum, New York(1999)
[38]. Yong Zhang, HuiFeng, Xingbing Wu, Lizhen Wang, Aiqin Zhang, Tongchi Xia, Huichao Dong, Xiaofeng Li, Linsen Zhang, “Progress of electrochemical capacitor electrode materials: A review,” International Journal of Hydrogen Energy, 34 [11] (2009) 4889–4899.
[39]. 劉茂煌,循環伏安法,http://www.teachers.fju.edu.tw/files/981/981015-1.pdf
[40]. 循環伏安法,http://m.instrument.com.cn/bbs/d-4866861-1.html
[41]. TarusheeAhujaa, Irfan Ahmad Mira, Devendra Kumara, Rajeshb, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials ,28 (2007) 791–805
[42]. Kathryn E. Toghill and Richard G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci., 5 (2010) 1246 – 1301
[43]. 張紘銓、張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
[44]. 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003[45]. 蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007[46]. 國立台灣科技大學,貴重儀器中心
[47]. 國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
[48]. 國立台灣科技大學X光繞射實驗室
[49]. 利用環電位儀偵測氧化還原電位及電流http://140.136.176.3/joom/data/menu/files/exp/CV
[50]. M. Toupin, T. Brousse, and D. Belanger, ‘‘Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor,’’Chem. Mater., vol. 16,pp.3184-3190, 2004.
[51]. A. Yu, I. Roes, A. Davies,and Z. Chen, ‘‘Ultrathin, transparent,and flexible graphene films for supercapacitor application,’’Appl.PhysLett., vol.96,pp. 253105-3,2010.
[52]. Sankaran, KamatchiJothiramalingam, et al. Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment. ACS applied materials & interfaces 616 (2014) 14543-14551.
[53]. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim,Raman Spectrum of Graphene and Graphene Layers,Phys. Rev. Lett. 97, 187401(2006)
[54]. W. Wu et al.,Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing,Sensors and Actuators B:Chemical,150 (2010) 296-300
[55]. HangyuLong,XuezhangLiu,YounengXie,NaixiuHu,ZejunDeng,YunluJiang,QiupingWei,ZhimingYu,ShugenZhang, Thickness effects of Ni on the modified boron doped diamond by thermal catalytic etching for non-enzymatic glucose sensing, Journal of Electroanalytical Chemistry Volume 832, 1 January 2019, Pages 353-360
[56]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[57]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[58]. CanLiaTingZhao,QiupingWei,ZejunDeng,HangyuLong,KuangzhiZheng,HaichaoLiaYaohuaGuo,Zhiming Yu,LiMa,KechaoZhou,NanHuang,Cheng-TeLinc, The effect of heat treatment time on the carbon-coated nickel nanoparticles modified boron-doped diamond composite electrode for non-enzymatic glucose sensing, Journal of Electroanalytical Chemistry,Volume 841, 15 May 2019, Pages 148-157
[59]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[60]. ZejunDeng,HangyuLong,QiupingWei,ZhimingYu,BoZhouaYijiaWang,LongZhang,ShashaLi,LiMa,YounengXie,JieMin, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode, Sensors and Actuators B: Chemical Volume 242, April 2017, Pages 825-834
[61]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[62]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[63]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[64]. Akbar Mohammadi, Zardkhoshoui, Saied Saeed Hosseiny Davarani, Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density, Journal of Electroanalytical Chemistry Volume 827, 15 October 2018, Pages 221-229
[65]. Police Anil Kumar Reddy, Chennaiahgari Manvitha, Rajender Boddula, S.V. PrabhakarVattikuti, MandariKotesh Kumar, Chan, and Byon”Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications” Materials
Research Bulletin, Volume 98, February 2018, Pages 314-321.