( 您好!臺灣時間:2021/04/12 12:14
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chun-Huang Chen
論文名稱(外文):Design and Verification of oneM2M Based Fog Computing Architecture
指導教授(外文):Sheng-Dong Xu
口試委員(外文):Kevin Cheng-Hao KoHsu-Chih Huang
外文關鍵詞:IoTfog computingcloud computingsmart trafficfog to fog computingoneM2M
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
依現有oneM2M物聯網架構對於前端邊緣節點之間的高解析度影像資料的傳輸時間為251.2~537.2ms,這樣的傳輸效率勢必不能達到低延遲、快速響應應用的要求。我們提出了一種新穎的方法稱之為oneM2M霧運算架構(oneM2M Fog Computing Architecture),在此架構之下可以跟鄰近霧節點交流協調合作處理作業需求,因此不再受限於節點對任務執行能力或需要轉發任務到雲端執行。
According to the existing oneM2M IoT architecture, the transmission time of high-resolution image data between edge nodes is 251.2~537.2ms, so the transmission efficiency will not be able bound to meet the requirements of low latency and fast response application. We propose a novel method called the oneM2M fog computing architecture. Under this architecture, it can communicate with adjacent fog nodes to coordinate and collaborate on job requirements, so they are no longer limited to node-to-task execution capabilities or need to forward tasks to the cloud for execution.
Finally, after practical and test verification, The computing architecture proposed in this paper can make the transmission time of high resolution image data between fog and fog nodes only cost 16.7~46.2ms, and shorten the transmission time of the original oneM2M architecture by up to 94.1%. In summary, such an approach would minimize overall end-to-end latency and meet the need for low latency and fast response applications for fog to fog computing.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 4
第二章 背景知識 5
2.1 oneM2M介紹 5
2.1.1 國際標準物聯網平台 5
2.1.2 分層模型 6
2.1.3 共同服務層 7
2.2 霧運算介紹 14
2.3 當前物聯網關聯之技術發展特性與趨勢 15
2.3.1 當前物聯網關聯之技術發展具有以下特性 15
2.3.2 霧運算產業應用情境智慧化的發展趨勢 16
2.4 雲霧運算平台階級架構 17
2.4.1 雲端運算主要功能 18
2.4.2 霧端運算主要功能 19
2.4.3 雲霧運算平台水平架構 19
第三章 系統架構與軟硬體介紹 22
3.1 oneM2M架構及主要功能 22
3.2 oneM2M霧運算架構 24
3.2.1 oneM2M霧運算架構(oneM2M Fog Computing Architecture) 26
3.2.2 oneM2M霧運算設計(oneM2M Fog Computing Design) 28
3.3 oneM2M 雲霧系統運作流程 38
3.4 Fog Mesh Agent 的 oneM2M資源樹建置與資料集 46
第四章 oneM2M霧運算架構與設計驗證 53
4.1 測試環境建構 53
4.1.1 硬體設備 54
4.1.2 網路交換器Switch and raspberry pi mac address mapping 55
4.1.3 軟體環境 55
4.1.4 oneM2M霧運算資源架構建立 56
4.2 測試結果 60
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 67
參考文獻 68
[1] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier fog computing with large-scale IoT data analytics for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 677-686, April 2018.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58, April 2010.
[3] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architecture, applications, and approaches,” Wireless Communications and Mobile Computing, vol. 13, no. 8, pp. 1587-1611, December 2013.
[4] Cisco, “Fog computing and the Internet of Things: extend the cloud to where the things are,” White Paper, Cisco, 2015.
[5] C. M. S. Magurawalage, K. Yang, L. Hu, and J. Zhang, “Energy-efficient and network-aware offloading algorithm for mobile cloud computing,” Computer Networks, vol. 74, Part B, pp. 22-33, December 2014.
[6] X. Wang, S. Leng, and K. Yang, “Social-aware edge caching in fog radio access networks,” IEEE Access, vol. 5, pp. 8492-8501, April. 2017.
[7] http://www.onem2m.org/technical/published-drafts, accessed 12 August 2018.
[8] F. J. Lin, B. Y. Chen, B. T. Lin, and W. H. Hu, “Charging architecture for M2M communications,” IEEE World Forum on Internet of Things (WF-IoT), pp. 123-128, Reston, VA, 12-14, December, 2016.
[9] Gartner, “Gartner Says 6.4 Billion Connected Things Will Be in Use in 2016, Up 30 Percent from 2015,” http://www.gartner.com/newsroom/id/3165317, accessed 12 August 2018.
[10] C. MacGillivray et al., IDC FutureScape: Worldwide Internet of Things 2017 Predictions, IDC FUTURESCAPE, DOC # US40755816, November 2016.
[11] N. Choi, D. Kim, S. J. Lee, and Y. Yi, “A fog operating system for user-oriented IoT services: challenges and research directions,” IEEE Communications Magazine, vol. 55, no. 8, pp. 44-51, August 2017.
[12] M. Aazam and E. N. Huh, “Fog computing: the cloud-IoT/IoE middleware paradigm,” IEEE Potentials, vol. 35, no. 3, pp. 40-44, May 2016.
[13] W. Masri, I. A. Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing delay in IoT systems through collaborative fog-to-fog (F2F) communication,” International Conference on Ubiquitous and Future Networks (ICUFN), pp. 1005-1010, Milan, Italy, 4-7 July 2017.
[14] C. C. Byers, “Architectural imperatives for fog computing: use cases, requirements, and architectural techniques for fog-enabled IoT networks,” IEEE Communications Magazine, vol. 55, no. 8, pp. 14-20, August 2017.
[15] A. Saikar, M. Parulekar, A. Badve, S. Thakkar, and A. Deshmukh, “TrafficIntel: smart traffic management for smart cities,” International Conference on Emerging Trends & Innovation in ICT (ICEI), pp. 46-50, Yashada, Pune, India, Feb. 3-5, 2017.
[16] https://www.raspberrypi.org/, accessed 12 August 2018.
[17] https://www.iconspng.com/image/82992/raspberry-pi-3, accessed 12 August 2018.
[18] https://www.raspberrypi.org/products/camera-module-v2/, accessed 12 August 2018.
[19] https://github.com/IoTKETI/Mobius, accessed 12 August 2018.
[20] http://www.tornadoweb.org/en/stable/, accessed 12 August 2018.
[21] https://www.python.org/, accessed 12 August 2018.
[22] https://nodejs.org/, accessed 12 August 2018.
[23] https://www.mysql.com/, accessed 12 August 2018
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔