[1] J. S. Barbieri, K. Wanat, and J. Seykora, "Skin: Basic Structure and Function," in Pathobiology of Human Disease, 2014, pp. 1134-1144.
[2] J. E. Lai-Cheong and J. A. McGrath, "Structure and function of skin, hair and nails," Medicine, vol. 45, no. 6, pp. 347-351, 2017.
[3] A. Baroni, E. Buommino, V. De Gregorio, E. Ruocco, V. Ruocco, and R. Wolf, "Structure and function of the epidermis related to barrier properties," Clin Dermatol, vol. 30, no. 3, pp. 257-62, 2012.
[4] OpenStax, Anatomy & Physiology. OpenStax CNX, Feb 26, 2016 p. Chapter 5. The Integumentary System.
[5] M. Venus, J. Waterman, and I. McNab, "Basic physiology of the skin," Surgery (Oxford), vol. 29, no. 10, pp. 471-474, 2011.
[6] O. Arda, N. Goksugur, and Y. Tuzun, "Basic histological structure and functions of facial skin," Clin Dermatol, vol. 32, no. 1, pp. 3-13, 2014.
[7] M. Machado, T. M. Salgado, J. Hadgraft, and M. E. Lane, "The relationship between transepidermal water loss and skin permeability," Int J Pharm, vol. 384, no. 1-2, pp. 73-7, 2010.
[8] 皮膚科王修含醫師, "超音波傳遞速率:聲音速度與介質的關係皮膚科," Available: http://www.skin168.net/2012/02/blog-post.html, 2012.
[9] 李嘉明、李玉華, "新超音波醫學1:醫用超音波的基礎," 合計圖書出版社, 2003.
[10] LightYear, "Ultrasound range diagram," Available: https://commons.wikimedia.org/wiki/File:Ultrasound_range_diagram.svg, 2007.
[11] 皮膚科王修含醫師, "醫用超音波(超聲波)簡介," Available: http://www.skin168.net/2012/02/blog-post.html, 2013.
[12] N. J. Hangiandreou, "AAPM/RSNA Physics Tutorial for Residents: Topics in US," B-mode US: Basic Concepts and New Technology1, vol. 23, no. 4, 2003.
[13] 王嘉弘, "高效率超音波驅動電路設計在生醫應用之研究," 碩士, 生物醫學科技研究所, 國立暨南國際大學, 南投縣, 2006.[14] L. D. Johns, "Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis," Journal of athletic training, vol. 37, no. 3, p. 293, 2002.
[15] P. Greillier, C. Bawiec, F. Bessière, and C. Lafon, "Therapeutic Ultrasound for the Heart: State of the Art," Irbm, vol. 39, no. 4, pp. 227-235, 2018.
[16] V. Sboros, "Response of contrast agents to ultrasound," Adv Drug Deliv Rev, vol. 60, no. 10, pp. 1117-36, 2008.
[17] M. J. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, "Microbubble contrast agents: a new era in ultrasound," Bmj, vol. 322, no. 7296, pp. 1222-1225, 2001.
[18] S. Sirsi and M. Borden, "Microbubble Compositions, Properties and Biomedical Applications," Bubble Sci Eng Technol, vol. 1, no. 1-2, pp. 3-17, 2009.
[19] M. W. G. a. K. S. Suslick, "Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent.," Proc Natl Acad Sci US A., vol. 88, pp. 7708-7710, 1991.
[20] S. Tinkov, R. Bekeredjian, G. Winter, and C. Coester, "Microbubbles as ultrasound triggered drug carriers," Journal of pharmaceutical sciences, vol. 98, no. 6, pp. 1935-1961, 2009.
[21] J. Wischhusen and F. Padilla, "Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue," Irbm, vol. 40, no. 1, pp. 10-15, 2019.
[22] M. Cheng, F. Li, T. Han, A. C. H. Yu, and P. Qin, "Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions," Ultrason Sonochem, vol. 52, pp. 512-521, 2019.
[23] N. Wallace, S. Dicker, P. Lewin, and S. P. Wrenn, "Inertial cavitation threshold of nested microbubbles," Ultrasonics, vol. 58, pp. 67-74, 2015.
[24] M. Guedra, C. Cornu, and C. Inserra, "A derivation of the stable cavitation threshold accounting for bubble-bubble interactions," Ultrason Sonochem, vol. 38, pp. 168-173, 2017.
[25] P. Muleki Seya, C. Desjouy, J. C. Bera, and C. Inserra, "Hysteresis of inertial cavitation activity induced by fluctuating bubble size distribution," Ultrason Sonochem, vol. 27, pp. 262-267, 2015.
[26] M. Wang and Y. Zhou, "Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue," Ultrason Sonochem, vol. 42, pp. 327-338, 2018.
[27] V. Meidan and B. B. Michniak-Kohn, "Ultrasound-based Technology for Skin Barrier Permeabilization," in Handbook of Non-Invasive Drug Delivery Systems: Elsevier, 2010, pp. 119-133.
[28] S. R. Sirsi and M. A. Borden, "Advances in ultrasound mediated gene therapy using microbubble contrast agents," Theranostics, vol. 2, no. 12, p. 1208, 2012.
[29] K. J. L. D, "Effect of ultrasound on transdermal drug delivery to rats and guinea pigs," The Journal of Clinical Investigation, vol. 83, no. 2, pp. 2074-2078, 1989.
[30] 陳思嘉 and 李百祺, "靶向超音波於血栓溶解之研究," 臺灣大學生醫電子與資訊學研究所學位論文, pp. 1-64, 2009.
[31] 謝依峻, "組織背景抑制於諧波對比劑偵測," 2007.
[32] N. D. Rawlings and A. J. Barrett, "Evolutionary families of peptidases," Biochemical Journal, vol. 290, no. 1, pp. 205-218, 1993.
[33] L. Hedstrom, "Serine protease mechanism and specificity," Chemical reviews, vol. 102, no. 12, pp. 4501-4524, 2002.
[34] K. List, T. H. Bugge, and R. Szabo, "Matriptase: potent proteolysis on the cell surface," Mol Med, vol. 12, no. 1-3, pp. 1-7, 2006.
[35] P. Ovaere, S. Lippens, P. Vandenabeele, and W. Declercq, "The emerging roles of serine protease cascades in the epidermis," Trends in biochemical sciences, vol. 34, no. 9, pp. 453-463, 2009.
[36] W. Appel, "Chymotrypsin: molecular and catalytic properties," Clinical biochemistry, vol. 19, no. 6, pp. 317-322, 1986.
[37] L. B. Evnin, J. R. Vásquez, and C. S. Craik, "Substrate specificity of trypsin investigated by using a genetic selection," Proceedings of the National Academy of Sciences, vol. 87, no. 17, pp. 6659-6663, 1990.
[38] Y. E. Shi, J. Torri, L. Yieh, A. Wellstein, M. E. Lippman, and R. B. Dickson, "Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells," Cancer research, vol. 53, no. 6, pp. 1409-1415, 1993.
[39] C.Y. Lin, J. Anders, M. Johnson, Q. A. Sang, and R. B. Dickson, "Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity," Journal of Biological Chemistry, vol. 274, no. 26, pp. 18231-18236, 1999.
[40] C. Kim, Y. Cho, C. H. Kang, M. G. Kim, H. S. Lee, E. G. Cho, D. Park, "Filamin is essential for shedding of the transmembrane serine protease, epithin," EMBO Rep, vol. 6, no. 11, pp. 1045-51, 2005.
[41] C. Y. Lin, J. Anders, M. Johnson, and R. B. Dickson, "Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk," Journal of Biological Chemistry, vol. 274, no. 26, pp. 18237-18242, 1999.
[42] T. M. Antalis, M. S. Buzza, K. M. Hodge, J. D. Hooper, and S. Netzel-Arnett, "The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment," Biochem J, vol. 428, no. 3, pp. 325-46, 2010.
[43] C. Y. Lin, I. C. Tseng, F. P. Chou, S. F. Su, Y.-W. Chen, M. D. Johnson, R. B. Dickson, "Zymogen activation, inhibition, and ectodomain shedding of matriptase," Frontiers in bioscience: a journal and virtual library, vol. 13, pp. 621-635, 2008.
[44] T. S. H. Kataoka, T. Kawaguchi, R. Hamasuna, H. Itoh, N. Kitamura, K. Miyazawa, M. Koono, "Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment," Journal of Biological Chemistry, vol. 275, no. 51, pp. 40453-40462, 2000.
[45] C. Benaud, M. Oberst, J. P. Hobson, S. Spiegel, R. B. Dickson, and C. Y. Lin, "Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase," J Biol Chem, vol. 277, no. 12, pp. 10539-46, 2002.
[46] H. X. I. C. Tseng, F. P. Chou, G. Li, A. P. Vazzanno, J. P. Y. Kao, M. D. Johnson, C. Y. Lin, "Matriptase activation, an early cellular response to acidosis," Journal of Biological Chemistry, vol. 285, no. 5, pp. 3261-3270, 2010.
[47] I. J. T. J. K. Wang, T. J. Lo, S. Moore, Y. H. Yeo, Y. C. Teng, M. Kaul, C. C. Chen, A. H. Zuo, F. P. Chou, X. Yang, I. C. Tseng, M D. Johnson, C. Y Lin, "Matriptase autoactivation is tightly regulated by the cellular chemical environments," PLoS One, vol. 9, no. 4, p. e93899, 2014.
[48] C. C. H. K. List, R. Szabo, W. Chen, S. M. Wahl, W. Swaim, L. H. Engelholm, N Behrendt, TH Bugge,, "Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis," Oncogene, vol. 21, no. 23, p. 3765, 2002.
[49] B. M. C. S. Netzel-Arnett, R. Szabo, C. Y. Lin, L. M. Chen, K. X. Chai, T.-M. Antalis, TH Bugge, K. List, "Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation," Journal of Biological Chemistry, vol. 281, no. 44, pp. 32941-32945, 2006.
[50] 陳奇雍, "人類皮膚對紫外線的反應,以及其中 matriptase所扮演的角色," 國防醫學院, 生命科學研究所, 博士 2017.[51] A. H. Liao, H. C. Ho, Y. C. Lin, H. K. Chen, and C. H. Wang, "Effects of microbubble size on ultrasound-induced transdermal delivery of high-molecular-weight drugs," PloS one, vol. 10, no. 9, p. e0138500, 2015.
[52] E. Stride, "Physical principles of microbubbles for ultrasound imaging and therapy," Cerebrovascular Diseases, vol. 27, no. Suppl. 2, pp. 1-13, 2009.
[53] J. C. Stockert, A. Blazquez-Castro, M. Canete, R. W. Horobin, and A. Villanueva, "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets," Acta Histochem, vol. 114, no. 8, pp. 785-96, 2012.