|
1. C.M.Fernandes, S., et al., Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 2010. 81(2): p. 394-401. 2. AvikKhan, et al., Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 2012. 90(4): p. 1601-1608. 3. Hande, C. and K. Ayse, Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate Polymers, 2015. 133: p. 284-293. 4. Rivkin, A., et al., Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015. 11(1): p. 44-58. 5. Meirovitch, S., et al., Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly. Int J Mol Sci, 2016. 17(9): p. 1573-1588. 6. Li, Y. and J. Ragauskas, Advances in Diverse Industrial Applications of Nanocomposites: Cellulose Nano Whiskers as a Reinforcing Filler in Polyurethanes. InTech, 2011. 7. Domingues, R.M.A., M.E. Gomes, and R.L. Reis, The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014. 15(7): p. 2327-2346. 8. Credou, J. and T. Berthelot, Cellulose- from biocompatible to bioactive material. Materials Chemistry B, 2014. 2: p. 4767–4788. 9. Habibi, Y., L.A. Lucia, and O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev., 2010. 110(6): p. 3479–3500. 10. Brinchi, L., et al., Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 2013. 94(1): p. 154-169. 11. Lee, K.-Y., et al., On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014. 105: p. 15-27. 12. Mahanta, N., Y. Teow, and S. Valiyaveettil, Viscoelastic hydrogels from poly(vinyl alcohol)–Fe(iii) complex. Biomaterials Science, 2013. 1(5): p. 519-527. 13. Islam, M.S., et al., Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 2018. 6: p. 864-883. 14. Rusli, R., et al., Stress transfer in cellulose nanowhisker composites--influence of whisker aspect ratio and surface charge. Biomacromolecules, 2011. 12(4): p. 1363-9. 15. Bondeson, D. and K. Oksman, Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites Part A: Applied Science and Manufacturing, 2007. 38(12): p. 2486-2492. 16. Uddin, A.J., J. Araki, and Y. Gotoh, Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Composites Part A: Applied Science and Manufacturing, 2011. 42(7): p. 741-747. 17. Hu, Z., et al., One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustainable Chem. Eng., 2017. 5: p. 5018−5026. 18. Abraham, E., et al., Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites. ACS Appl Mater Interfaces, 2016. 8: p. 28086−28095. 19. Abraham, E., et al., Highly Hydrophobic Thermally Stable Liquid Crystalline Cellulosic Nanomaterials. ACS, 2016. 4: p. 1338-1346. 20. Chowdhury, R.A., C. Clarkson, and J. Youngblood, Continuous roll-to-roll fabrication of transparent cellulose nanocrystal (CNC) coatings with controlled anisotropy. Springer 2018. 21. Lewis, L., et al., Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 2016. 17(8): p. 2747-2754. 22. Abraham, E., et al., Multifunctional Cellulosic Scaffolds from Modified Cellulose Nanocrystals. ACS Appl. Mater. Interfaces, 2017. 9: p. 2010-2015. 23. Otoni, C.G., et al., Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Comprehensive Reviews in Food Science and Food Safety, 2017. 16: p. 1151-1169. 24. Hu, Z., et al., Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions. ACS, 2016. 5: p. 185-189. 25. Li, X., et al., Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydr Polym, 2018. 183: p. 303-310. 26. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003. 60(5): p. 523-533. 27. Credou, J. and T. Berthelot, Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014. 2(30): p. 4767-4788. 28. Linder, M. and T.T. Teeri, The roles and function of cellulose-binding domains. Journal of Biotechnology, 1997. 57(1-3): p. 15-28. 29. Wang, A.A., A. Mulchandani, and W. Chen, Whole-Cell Immobilization Using Cell Surface-Exposed Cellulose-Binding Domain. Biotechnol. Prog., 2001. 17: p., 407−411. 30. KAUFFMANN, C., et al., Novel Methodology for Enzymatic Removal of Atrazine from Water by CBD-Fusion Protein Immobilized on Cellulose. Environ. Sci. Technol., 2000. 34: p. 1292-1296. 31. M., L., et al., Characterization of a double cellulose-binding domain. Synergistic high affinity binding to crystalline cellulose. Journal of Biological Chemistry, 1996. 271(35): p. 21268-21272. 32. Levy, I. and O. Shoseyov, Cellulose-binding domains Biotechnological applications. Biotechnology Advances, 2002. 20(3-4): p. 191 – 213. 33. TorkelWeis-Fogh, Molecular interpretation of the elasticity of resilin, a rubber-like protein. Journal of Molecular Biology, 1961. 3(5): p. 648-667. 34. Gosline, J., et al., Elastic proteins: biological roles and mechanical properties. Philosophical Transactions of the Royal Society B, 2002. 357(1418): p. 121–132. 35. Rothschild, M., et al., Execution of the Jump and Activity. Philosophical Transactions of The Royal Society B Biological Sciences, 1975. 271(914): p. 499-515 36. Ardell, D.H. and S.O. Andersen, Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2001. 31(10): p. 965–970. 37. Qin, G., et al., Expression, Cross-Linking, and Characterization of Recombinant Chitin Binding Resilin. Biomacromolecules, 2009. 10(12): p. 3227–3234. 38. Su, R.S.-C., Y. Kim, and J.C. Liu, Resilin: Protein-based elastomeric biomaterials. Acta Biomaterialia, 2014. 10: p. 1601–1611. 39. Elvin, C.M., et al., Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005. 437(7061): p. 999-1002. 40. MisookKim, et al., High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E. coli and facile purification. Protein Expression and Purification, 2007. 52(1): p. 230-236. 41. Qin, G., et al., Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules, 2009. 10(12): p. 3227-3234. 42. GuokuiQin, et al., Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials, 2011. 32(35): p. 9231-9243. 43. Rivkin, A., et al., Bio-Inspired elastic composites of nano crystalline cellulose and cellulose binding resilin. Paper presented at the 34th Riso international symposium on materials science: processing of fibre composites-challenge for maximum materials performance, Technical University of Denmark, Roskilde., 2013. 44. Chaussard, G. and A. Domard, New Aspects of the Extraction of Chitin from Squid Pens. Biomacromolecules, 2004. 5: p. 559-564. 45. A., B.V., et al., Physicochemical characterization of biopolymers chitin and chitosan extracted from squid Doryteuthis sibogae Adam. 1954. 46. Mahmoud, N.S., A.E. Ghaly, and F. Arab, Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production. Am. J. Biochem. Biotechnol, 2007. 3: p. 1-9. 47. Zhong, C., et al., A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter 2010. 6(21): p. 5298-5301. 48. Fan, Y., T. Saito, and A. Isogai, Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules, 2008. 9(7): p. 1919-1923. 49. Nata, I.F., et al., Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter, 2012. 8: p. 3522–3525. 50. Nata, I.F., et al., β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym, 2012. 90(4): p. 1509-1514. 51. Liu, C.-G., et al., Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. J. Agric. Food Chem., 2005. 53(2). 52. Mourya, V.K., N.N. Inamdar, and A. Tiwari, Carboxymethyl chitosan and its applications. Adv. Mater. Lett., 2010. 1. 53. Zhu, A., et al., The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution Colloids Surf., B, 2005. 43(3-4): p. 143-149. 54. Javvaji, V., et al., Reversible gelation of cells using self-assembling hydrophobically-modified biopolymers: towards self-assembly of tissue. Biomater. Sci., 2014. 2(7): p. 1016-1023. 55. Dowling, M.B., et al., A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials 2011. 32(13): p. 3351-3357. 56. Vo, D.-T., C.G. Whiteley, and C.-K. Lee, Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Ind. Eng. Chem., 2015. 54(38): p. 9270–9277. 57. Tiller, J.C., et al., Designing surfaces that kill bacteria on contact. PNAS, 2001. 98(11): p. 5981-5985. 58. Kong, M., et al., Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids and Surfaces B, 2008. 65: p. 197–202. 59. Tan, H., et al., Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci., 2013. 14(1): p. 1854-1869. 60. Vo, D.T. and C.K. Lee, Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydrate Polymers, 2017. 164: p. 109-117. 61. Duc-ThangVo and Cheng-KangLee, Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydrate Polymers, 2018. 187: p. 1-7. 62. Aksu, Z., Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005. 40: p. 997–1026. 63. Mittal, A., et al., Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007. 148(1-2): p. 229-240. 64. Saha, T.K., et al., Adsorption of methyl orange onto chitosan from aqueous solution. Water Resource and Protection, 2010. 2(10): p. 898-906. 65. M., A., Biosorption of reactive dyes: a review. Water Air Soil Pollut Water, Air, & Soil Pollution, 2012. 223(5): p. 2417–2435. 66. Vakili, M., et al., Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym., 2014. 113: p. 115-130. 67. Haque, E., J.W. Jun, and S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 2011. 185: p. 507–511. 68. T.Yagub, M., et al., Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014. 209: p. 172-184. 69. Zhou, Y., et al., Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose. Ind. Eng. Chem. , 2014. 53(13): p. 5498–5506. 70. P.Kanmani, et al., Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresource Technology, 2017. 242: p. 295-303. 71. Chen, H., et al., Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 2011. 192: p. 246-254. 72. Hu, Y., et al., Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J., 2013. 228: p. 392-397. 73. Nga, N.K., et al., Facile Preparation of Chitosan Films for High Performance Removal of Reactive Blue 19 Dye from Aqueous Solution. Journal of Polymers and the Environment, 2016. 25(2): p. 146–155. 74. Tian, X., et al., Cationic cellulose nanocrystals (CCNCs) and chitosan nanocomposite films filled with CCNCs for removal of reactive dyes from aqueous solutions. Cellulose, 2018. 25: p. 3927–3939. 75. Duc-ThangVo and Cheng-KangLee, Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal. Journal of Environmental Chemical Engineering, 2017. 5(6): p. 5688-5694. 76. Molnes, S.N., et al., The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose, 2017. 24(10): p. 4479–4491. 77. Boluk, Y., et al., Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 377(1-3): p. 297-303. 78. Shafiei-Sabet, S., W.Y. Hamad, and S.G. Hatzikiriakos, Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose, 2014. 21(5): p. 3347–3359. 79. Shaw., N.B., et al., Effect of soya oil and glycerol on physical properties of composite WPI films. Journal of Food Engineering, 2002. 51(4): p. 299-304. 80. M.A.Bertuzzi, M.Armada, and J.C.Gottifredi, Physicochemical characterization of starch based films. Journal of Food Engineering, 2007. 82(1): p. 17-25. 81. Mittal, N., et al., Ultrastrong and Bioactive Nanostructured Bio-Based Composites. ACS Nano, 2017. 11(5): p. 5148–5159. 82. Salari, M., et al., Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 2018. 84: p. 414-423. 83. Kim, D., et al., Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress in Organic Coatings, 2012. 74(3): p. 435-442. 84. Shojaeiarani, J., D.S. Bajwa, and N.M. Stark, Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J. APPL. POLYM. SCI., 2018. 85. Cao, X., Y. Habibi, and L.A. Lucia, One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry, 2009. 19(38). 86. Peng, Y., et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 2013. 20(5): p. 2379-2392. 87. Chen, L., et al., Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 2016(13): p. 3835–3843. 88. Chen, Y.W., et al., Easy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO(3))(3) Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions. Materials (Basel), 2017. 10(1). 89. Hu, Y., et al., Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers, 2007. 67(1): p. 66-72. 90. Tang, Y., et al., Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym, 2018. 197: p. 128-136.
|