跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家右
研究生(外文):JIA-YOU LIN
論文名稱:重組節肢彈性蛋白與疏水性穀聚醣對於奈米結晶纖維素複合薄膜功能性之研究
論文名稱(外文):Functionalization and performance enhancement of composite films prepared by cellulose nanocrystals/resilin-CBD /hydrophobically modified chitosan
指導教授:李振綱李振綱引用關係
指導教授(外文):Cheng-Kang Lee
口試委員:蔡伸隆楊佩芬
口試委員(外文):Shen-Long Tsai
口試日期:2019-01-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:119
中文關鍵詞:奈米結晶纖維素奈米結晶纖維素複合薄膜重組節肢彈性蛋白穀聚醣疏水性穀聚醣
外文關鍵詞:Cellulose nanocrystals (CNCs)Cellulose nanocrystals composite filmsresilin-CBDChitosanHydrophobically modified chitosan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
寬度與長度分別為5~20nm與100~500nm之短桿狀結構纖維素奈米結晶(Cellulose Nanocrystals, CNCs),其表面帶有大量SO3-基團,而能容易地在水中形成穩定的膠體懸浮液,當其溶液乾燥後便能得到透明的纖維素薄膜,然而此薄膜與水接觸後便會溶解而分散懸浮,且乾燥之薄膜彎曲時也易斷裂。因此為了解決這些問題,我們將纖維素結合蛋白(CBD)融合上彈性蛋白resilin 1成為CBD-resilin 1,此外也在彈性蛋白兩端分別融合上CBD成為CBD-resilin 1-CBD,此兩種融合蛋白分別與含有1%甘油之CNCs混合可製備出仿生之纖維素複合薄膜,由於彈性蛋白resilin 1的存在,此兩種生物複合膜的應變量(strain-at-break)可分別提升42%與85%。此外,將CNCs分別與幾丁質奈米纖維素(CNF)與疏水性穀聚醣(HMCS)混和可製備出透明且耐水的CNCs@CNF與CNCs@HMCS複合薄膜,耐水性改善的原因在於CNF與HMCS結構上皆帶有正電荷胺基,與CNCs接觸後能中和掉CNCs上之負電荷,此外HMCS上的疏水性C12烴鏈,亦會賦予CNCs@HMCS複合薄膜疏水性,其接觸角由53.27提升為84.96。CNCs@HMCS複合薄膜仍然保有HMCS本身對染劑之吸附性與抗菌活性,不僅能達到70%以上的大腸桿菌殺菌效果;且1克重之複合薄膜也能吸附181.95 1.14毫克的甲基橙。也由於CNCs與HMCS能在薄膜內形成穩定的氫鍵網絡,因此能提升複合薄膜的熱穩定度,使熱降解起始溫度與最大質量損失率的溫度點分別比CNCs薄膜高34 oC與50 oC;而楊氏模數(Modulus)、拉伸強度(Tensile Strength)、應變量與CNCs薄膜相比下,也分別提升了95%、66%與93%。
Cellulose Nanocrystals (CNCs) are highly crystalline rod-like nanomaterials can readily form stable colloidal suspensions in deionized water. However, the transparent dry film obtained via simple evaporation-induced self-assembly of coated CNCs suspension will readily dissolve in water due to the presence of strong anionic SO3- groups on the surface of CNCs. Besides, the dry CNCs film is not tough enough to endure the repeated bending. In order to improve these drawbacks, we created CBD-resilin 1 and CBD-resilin 1-CBD fusion proteins by fusing one or two cellulose binding domain (CBD) with elastic protein resilin 1. The biomimetic composite films could be acquired by drying the mixture consisted of CBD fusions proteins, CNCs solution and 1% of the glycerol. Due to the elasticity of the resilin 1, the strain-at-break of the biocompoiste films increased by 42% and 85% respectively in comparison with the pure CNCs film.
Water durable and transparent CNCs@CNF and CNCs@HMCS composite films can be generated by drying the mixture containing CNCs, chitin nanofiber (CNF), and hydrophobically modified chitosan (HMCS) respectively. The charge neutralization of the biocomposite film caused by the cationic amino groups of CNF and HMCS contributes to the water durability of the composite films. Especially, the presene of hydrophobicity of C12 hydrocarbon tail grafted on HMCS increased the water contact angle of CNCs@HMCS film from 53.27 to 84.96. Additionally, the HMCS doped CNCs film can effectively adsorb methyl orange with capacity of 181.95 1.14 mg /g and kill at least 70% of E-coli. It indicates the composite still maintained the dye adsorption and antimicrobial activity of HMCS. Not only the better thermal stability of the transparent CNCs@HMCS composite film could be achieved, but its mechanical properties were signigicantly impoved with Young’s modulus (GPa), tensile strength (Mpa) and strain-at-break (%) increased 95%, 66% and 93% respectively as compared with CNCs film.
第一章 緒論 1
1.1 前言 1
1.2 研究內容及目的 2
第二章 文獻回顧 4
2.1 奈米結晶纖維素(Cellulose Nanocrystals, CNCs) 4
2.1.1 纖維素的組成與來源 4
2.1.2 CNCs的製備 4
2.1.3 CNCs於複合材料的應用 6
2.2 纖維素結合功能域 (Cellulose Binding Domain,CBD) 7
2.2.1 CBD與CBD融合蛋白 7
2.2.2 CBD融合蛋白於纖維上之應用 8
2.3 節肢彈性蛋白 (Resilin) 8
2.3.1 Resilin特性 8
2.3.2 Resilin 之組成 9
2.3.3 重組resilin之發展 11
2.4 幾丁質奈米纖維素(Chitin Nanofiber,CNF) 13
2.4.1 幾丁質的來源與結構 13
2.4.2 CNF的製備與應用 14
2.5 疏水性殼聚糖(Hydrophobically modified chitosan,HMCS) 15
2.5.1 HMCS的來源與應用 15
2.5.2 HMCS的抗菌功能 16
2.5.3 HMCS的染劑吸附功能 17
第三章 實驗流程、材料與方法 19
3.1 實驗架構 19
3.2 實驗材料 20
3.2.1 菌株 20
3.2.2 質體 20
3.2.3 標準分子量溶液 (marker) 20
3.2.4 實驗藥品 20
3.3 溶液配置 23
3.4 實驗設備 26
3.5 實驗方法 29
3.5.1 CBD-resilin 1、CBD-resilin 1-CBD菌株培養及融合蛋白之生產 29
3.5.2 CBD-Ag菌株培養及融合蛋白之生產 30
3.5.3 融合蛋白之加熱純化 31
3.5.4 蛋白質濃度分析 31
3.5.5 CBD-resilin 1、CBD-resilin 1-CBD、CBD-Ag於CNCs之吸附 33
3.5.6 蛋白質電泳分析 34
3.5.6.1 SDS-PAGE膠片製作 34
3.5.6.2 待測樣品前處理 35
3.5.6.3 電泳分析 35
3.5.7 薄膜材料 36
3.5.7.1 CNC溶液製備 36
3.5.7.2 CNF溶液製備 36
3.5.7.3 CS、HMCS溶液製備 37
3.5.7.4 融合蛋白粉末製備 39
3.5.8 薄膜製備 39
3.5.8.1 生物複合薄膜 39
3.5.8.2 CNCs、CNF、CS、HMCS薄膜 40
3.5.8.3 CNCs@HMCS、CNCs@CNF複合薄膜 40
3.6 薄膜性質分析 42
3.6.1 透明度 42
3.6.2 界面電位(Zeta-potential) 42
3.6.3 黏度(Viscosity) 42
3.6.4 接觸角(Water contact angle)與耐水性(Water durability) 42
3.6.5 官能基分析 43
3.6.6 SEM觀察下之表面、剖面結構與組成元素分析 43
3.6.7 AFM觀察下之表面結構 43
3.6.8 熱穩定性分析 44
3.6.9 抗菌分析 44
3.6.10 染劑吸附 46
3.6.11 拉伸試驗分析 47
第四章 結果與討論 48
4.1 CBD融合Resilin蛋白改質奈米結晶纖維素(CNCs) 48
4.1.1 融合蛋白純化方法與對其在CNCs上吸附之影響 48
4.1.2 CNCs對融合蛋白之吸附 51
4.2 CNCs生物複合薄膜 52
4.2.1 生物複合膜之透明度 54
4.2.2 AFM分析 58
4.2.3 FTIR-ATR分析 59
4.2.4 拉伸試驗 61
4.3 CNCs@HMCS、CNCs@CNF複合薄膜 64
4.3.1 SEM分析 65
4.3.2 複合膜之透明度 66
4.3.3 AFM分析 68
4.3.4 界面電位與移動率 70
4.3.5 溶液黏度 71
4.3.6 接觸角與耐水性分析 72
4.3.7 FTIR-ATR分析 76
4.3.8 SEM-EDS表面元素分析 77
4.3.9 TGA/DTG分析 78
4.3.10 抗菌(E. coli)功能 81
4.3.11 染劑吸附功能 83
4.3.12 拉伸試驗 86
4.3.13 複合薄膜改質濾紙表面 88
第五章 結論 90
參考文獻 94
1. C.M.Fernandes, S., et al., Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 2010. 81(2): p. 394-401.
2. AvikKhan, et al., Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 2012. 90(4): p. 1601-1608.
3. Hande, C. and K. Ayse, Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate Polymers, 2015. 133: p. 284-293.
4. Rivkin, A., et al., Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015. 11(1): p. 44-58.
5. Meirovitch, S., et al., Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly. Int J Mol Sci, 2016. 17(9): p. 1573-1588.
6. Li, Y. and J. Ragauskas, Advances in Diverse Industrial Applications of Nanocomposites: Cellulose Nano Whiskers as a Reinforcing Filler in Polyurethanes. InTech, 2011.
7. Domingues, R.M.A., M.E. Gomes, and R.L. Reis, The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014. 15(7): p. 2327-2346.
8. Credou, J. and T. Berthelot, Cellulose- from biocompatible to bioactive material. Materials Chemistry B, 2014. 2: p. 4767–4788.
9. Habibi, Y., L.A. Lucia, and O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev., 2010. 110(6): p. 3479–3500.
10. Brinchi, L., et al., Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 2013. 94(1): p. 154-169.
11. Lee, K.-Y., et al., On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014. 105: p. 15-27.
12. Mahanta, N., Y. Teow, and S. Valiyaveettil, Viscoelastic hydrogels from poly(vinyl alcohol)–Fe(iii) complex. Biomaterials Science, 2013. 1(5): p. 519-527.
13. Islam, M.S., et al., Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 2018. 6: p. 864-883.
14. Rusli, R., et al., Stress transfer in cellulose nanowhisker composites--influence of whisker aspect ratio and surface charge. Biomacromolecules, 2011. 12(4): p. 1363-9.
15. Bondeson, D. and K. Oksman, Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites Part A: Applied Science and Manufacturing, 2007. 38(12): p. 2486-2492.
16. Uddin, A.J., J. Araki, and Y. Gotoh, Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Composites Part A: Applied Science and Manufacturing, 2011. 42(7): p. 741-747.
17. Hu, Z., et al., One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustainable Chem. Eng., 2017. 5: p. 5018−5026.
18. Abraham, E., et al., Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites. ACS Appl Mater Interfaces, 2016. 8: p. 28086−28095.
19. Abraham, E., et al., Highly Hydrophobic Thermally Stable Liquid Crystalline Cellulosic Nanomaterials. ACS, 2016. 4: p. 1338-1346.
20. Chowdhury, R.A., C. Clarkson, and J. Youngblood, Continuous roll-to-roll fabrication of transparent cellulose nanocrystal (CNC) coatings with controlled anisotropy. Springer 2018.
21. Lewis, L., et al., Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 2016. 17(8): p. 2747-2754.
22. Abraham, E., et al., Multifunctional Cellulosic Scaffolds from Modified Cellulose Nanocrystals. ACS Appl. Mater. Interfaces, 2017. 9: p. 2010-2015.
23. Otoni, C.G., et al., Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Comprehensive Reviews in Food Science and Food Safety, 2017. 16: p. 1151-1169.
24. Hu, Z., et al., Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions. ACS, 2016. 5: p. 185-189.
25. Li, X., et al., Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydr Polym, 2018. 183: p. 303-310.
26. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003. 60(5): p. 523-533.
27. Credou, J. and T. Berthelot, Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2014. 2(30): p. 4767-4788.
28. Linder, M. and T.T. Teeri, The roles and function of cellulose-binding domains. Journal of Biotechnology, 1997. 57(1-3): p. 15-28.
29. Wang, A.A., A. Mulchandani, and W. Chen, Whole-Cell Immobilization Using Cell Surface-Exposed Cellulose-Binding Domain. Biotechnol. Prog., 2001. 17: p., 407−411.
30. KAUFFMANN, C., et al., Novel Methodology for Enzymatic Removal of Atrazine from Water by CBD-Fusion Protein Immobilized on Cellulose. Environ. Sci. Technol., 2000. 34: p. 1292-1296.
31. M., L., et al., Characterization of a double cellulose-binding domain. Synergistic high affinity binding to crystalline cellulose. Journal of Biological Chemistry, 1996. 271(35): p. 21268-21272.
32. Levy, I. and O. Shoseyov, Cellulose-binding domains Biotechnological applications. Biotechnology Advances, 2002. 20(3-4): p. 191 – 213.
33. TorkelWeis-Fogh, Molecular interpretation of the elasticity of resilin, a rubber-like protein. Journal of Molecular Biology, 1961. 3(5): p. 648-667.
34. Gosline, J., et al., Elastic proteins: biological roles and mechanical properties. Philosophical Transactions of the Royal Society B, 2002. 357(1418): p. 121–132.
35. Rothschild, M., et al., Execution of the Jump and Activity. Philosophical Transactions of The Royal Society B Biological Sciences, 1975. 271(914): p. 499-515
36. Ardell, D.H. and S.O. Andersen, Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2001. 31(10): p. 965–970.
37. Qin, G., et al., Expression, Cross-Linking, and Characterization of Recombinant Chitin Binding Resilin. Biomacromolecules, 2009. 10(12): p. 3227–3234.
38. Su, R.S.-C., Y. Kim, and J.C. Liu, Resilin: Protein-based elastomeric biomaterials. Acta Biomaterialia, 2014. 10: p. 1601–1611.
39. Elvin, C.M., et al., Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005. 437(7061): p. 999-1002.
40. MisookKim, et al., High yield expression of recombinant pro-resilin: Lactose-induced fermentation in E. coli and facile purification. Protein Expression and Purification, 2007. 52(1): p. 230-236.
41. Qin, G., et al., Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules, 2009. 10(12): p. 3227-3234.
42. GuokuiQin, et al., Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials, 2011. 32(35): p. 9231-9243.
43. Rivkin, A., et al., Bio-Inspired elastic composites of nano crystalline cellulose and cellulose binding resilin. Paper presented at the 34th Riso international symposium on materials science: processing of fibre composites-challenge for maximum materials performance, Technical University of Denmark, Roskilde., 2013.
44. Chaussard, G. and A. Domard, New Aspects of the Extraction of Chitin from Squid Pens. Biomacromolecules, 2004. 5: p. 559-564.
45. A., B.V., et al., Physicochemical characterization of biopolymers chitin and chitosan extracted from squid Doryteuthis sibogae Adam. 1954.
46. Mahmoud, N.S., A.E. Ghaly, and F. Arab, Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production. Am. J. Biochem. Biotechnol, 2007. 3: p. 1-9.
47. Zhong, C., et al., A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter 2010. 6(21): p. 5298-5301.
48. Fan, Y., T. Saito, and A. Isogai, Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules, 2008. 9(7): p. 1919-1923.
49. Nata, I.F., et al., Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter, 2012. 8: p. 3522–3525.
50. Nata, I.F., et al., β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym, 2012. 90(4): p. 1509-1514.
51. Liu, C.-G., et al., Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. J. Agric. Food Chem., 2005. 53(2).
52. Mourya, V.K., N.N. Inamdar, and A. Tiwari, Carboxymethyl chitosan and its applications. Adv. Mater. Lett., 2010. 1.
53. Zhu, A., et al., The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution Colloids Surf., B, 2005. 43(3-4): p. 143-149.
54. Javvaji, V., et al., Reversible gelation of cells using self-assembling hydrophobically-modified biopolymers: towards self-assembly of tissue. Biomater. Sci., 2014. 2(7): p. 1016-1023.
55. Dowling, M.B., et al., A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials 2011. 32(13): p. 3351-3357.
56. Vo, D.-T., C.G. Whiteley, and C.-K. Lee, Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Ind. Eng. Chem., 2015. 54(38): p. 9270–9277.
57. Tiller, J.C., et al., Designing surfaces that kill bacteria on contact. PNAS, 2001. 98(11): p. 5981-5985.
58. Kong, M., et al., Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids and Surfaces B, 2008. 65: p. 197–202.
59. Tan, H., et al., Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci., 2013. 14(1): p. 1854-1869.
60. Vo, D.T. and C.K. Lee, Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydrate Polymers, 2017. 164: p. 109-117.
61. Duc-ThangVo and Cheng-KangLee, Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydrate Polymers, 2018. 187: p. 1-7.
62. Aksu, Z., Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005. 40: p. 997–1026.
63. Mittal, A., et al., Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007. 148(1-2): p. 229-240.
64. Saha, T.K., et al., Adsorption of methyl orange onto chitosan from aqueous solution. Water Resource and Protection, 2010. 2(10): p. 898-906.
65. M., A., Biosorption of reactive dyes: a review. Water Air Soil Pollut Water, Air, & Soil Pollution, 2012. 223(5): p. 2417–2435.
66. Vakili, M., et al., Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym., 2014. 113: p. 115-130.
67. Haque, E., J.W. Jun, and S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 2011. 185: p. 507–511.
68. T.Yagub, M., et al., Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014. 209: p. 172-184.
69. Zhou, Y., et al., Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose. Ind. Eng. Chem. , 2014. 53(13): p. 5498–5506.
70. P.Kanmani, et al., Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresource Technology, 2017. 242: p. 295-303.
71. Chen, H., et al., Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 2011. 192: p. 246-254.
72. Hu, Y., et al., Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J., 2013. 228: p. 392-397.
73. Nga, N.K., et al., Facile Preparation of Chitosan Films for High Performance Removal of Reactive Blue 19 Dye from Aqueous Solution. Journal of Polymers and the Environment, 2016. 25(2): p. 146–155.
74. Tian, X., et al., Cationic cellulose nanocrystals (CCNCs) and chitosan nanocomposite films filled with CCNCs for removal of reactive dyes from aqueous solutions. Cellulose, 2018. 25: p. 3927–3939.
75. Duc-ThangVo and Cheng-KangLee, Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal. Journal of Environmental Chemical Engineering, 2017. 5(6): p. 5688-5694.
76. Molnes, S.N., et al., The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose, 2017. 24(10): p. 4479–4491.
77. Boluk, Y., et al., Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 377(1-3): p. 297-303.
78. Shafiei-Sabet, S., W.Y. Hamad, and S.G. Hatzikiriakos, Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose, 2014. 21(5): p. 3347–3359.
79. Shaw., N.B., et al., Effect of soya oil and glycerol on physical properties of composite WPI films. Journal of Food Engineering, 2002. 51(4): p. 299-304.
80. M.A.Bertuzzi, M.Armada, and J.C.Gottifredi, Physicochemical characterization of starch based films. Journal of Food Engineering, 2007. 82(1): p. 17-25.
81. Mittal, N., et al., Ultrastrong and Bioactive Nanostructured Bio-Based Composites. ACS Nano, 2017. 11(5): p. 5148–5159.
82. Salari, M., et al., Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 2018. 84: p. 414-423.
83. Kim, D., et al., Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Progress in Organic Coatings, 2012. 74(3): p. 435-442.
84. Shojaeiarani, J., D.S. Bajwa, and N.M. Stark, Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J. APPL. POLYM. SCI., 2018.
85. Cao, X., Y. Habibi, and L.A. Lucia, One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry, 2009. 19(38).
86. Peng, Y., et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 2013. 20(5): p. 2379-2392.
87. Chen, L., et al., Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 2016(13): p. 3835–3843.
88. Chen, Y.W., et al., Easy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO(3))(3) Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions. Materials (Basel), 2017. 10(1).
89. Hu, Y., et al., Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers, 2007. 67(1): p. 66-72.
90. Tang, Y., et al., Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr Polym, 2018. 197: p. 128-136.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top