|
1. Hashikin, N., et al. Samarium-153 labelled microparticles for targeted radionuclide therapy of liver tumor. in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada. 2015. Springer. 2. Hashikin, N.A.A., et al., Organ doses from hepatic radioembolization with 90 Y, 153 Sm, 166 Ho and 177 Lu: A Monte Carlo simulation study using Geant4. Journal of Physics: Conference Series, 2016. 694(1): p. 012059. 3. Dolezal, J., J. Vizda, and K. Odrazka, Prospective Evaluation of Samarium-153-EDTMP Radionuclide Treatment for Bone Metastases in Patients with Hormone-Refractory Prostate Cancer. Urologia Internationalis, 2007. 78(1): p. 50-57. 4. Hashikin, N.A.A., et al., Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities. PLoS ONE, 2015. 10(9): p. e0138106. 5. Di Corato, R., et al., High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs. ACS Nano, 2013. 7(9): p. 7500-7512. 6. Ryu, J.H., P.B. Messersmith, and H. Lee, Polydopamine Surface Chemistry: A Decade of Discovery. ACS applied materials & interfaces, 2018. 10(9): p. 7523-7540. 7. Luo, H., et al., Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Advances, 2015. 5(18): p. 13470-13477. 8. Chen, S., Y. Cao, and J. Feng, Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS applied materials & interfaces, 2013. 6(1): p. 349-356. 9. Hu, J., et al., Synthesis of core-shell structured alumina/Cu microspheres using activation by silver nanoparticles deposited on polydopamine-coated surfaces. RSC Advances, 2016. 6(85): p. 81767-81773. 10. Liu, D., et al., Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria. ACS Applied Materials & Interfaces, 2016. 8(37): p. 24455-24462. 11. Zeng, T., et al., In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Applied Catalysis B: Environmental, 2013. 134-135: p. 26-33. 12. Ding, X., et al., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy †Electronic supplementary information (ESI) available: Experimental procedures, supplementary figures and table of relaxivity of the present work and reported Mn-based nanoparticles. See DOI: 10.1039/c6sc01320a Click here for additional data file. Chemical Science, 2016. 7(11): p. 6695-6700. 13. Xi, J., et al., Mn(2+)-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. International Journal of Nanomedicine, 2017. 12: p. 3331-3345. 14. Lee, C., et al., Bioinspired, Calcium-Free Alginate Hydrogels with Tunable Physical and Mechanical Properties and Improved Biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-2013. 15. Huang, S.-L. and L. yung-sheng, The Size Stability of Alginate Beads by Different Ionic Crosslinkers. Vol. 2017. 2017. 1-7. 16. Pereira, R., A. Mendes, and P. Bártolo, Alginate/Aloe Vera Hydrogel Films for Biomedical Applications. Procedia CIRP, 2013. 5: p. 210-215. 17. Siqueira, P., et al., Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials (Basel, Switzerland), 2019. 9(1): p. 78. 18. Goswami, S., J. Bajpai, and A.K. Bajpai, Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. Journal of Experimental Nanoscience, 2014. 9(4): p. 337-356. 19. Sarei, F., et al., Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian journal of pharmaceutical sciences, 2013. 75(4): p. 442-449. 20. Dey, S., et al., Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydrate Polymers, 2016. 136: p. 71-80. 21. Sachan, N., et al., Sodium alginate: The wonder polymer for controlled drug delivery. Vol. 2. 2009. 22. Ogutu, F.O., et al., Ultrasonic modification of selected polysaccharides-review. Journal of Food Processing & Technology, 2015. 6(5): p. 1. 23. Lin, Y.-S., et al., Gadolinium(III)-Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents. The Journal of Physical Chemistry B, 2004. 108(40): p. 15608-15611. 24. Chen, Z., et al., Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Journal of Drug Targeting, 2011. 19(8): p. 657-665. 25. Muthu, M.S., et al., Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014. 4(6): p. 660-677. 26. De La Vega, J.C., et al., Radioembolization of Hepatocellular Carcinoma with Built-In Dosimetry: First in vivo Results with Uniformly-Sized, Biodegradable Microspheres Labeled with (188)Re. Theranostics, 2019. 9(3): p. 868-883. 27. Krishnakumar, B. and T. Imae, Chemically modified novel PAMAM-ZnO nanocomposite: Synthesis, characterization and photocatalytic activity. Applied Catalysis A: General, 2014. 486: p. 170-175. 28. Efa, M.T. and T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 2018. 29. Ton, K.A., et al., Preparation of Sm, Gd and Fe Oxide Nanoparticle-Polydopamine Multicomponent Nanocomposites. Bulletin of the Chemical Society of Japan. 0(0): p. null. 30. Mascolo, M.C., Y. Pei, and T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 2013. 6(12): p. 5549-5567. 31. Rani, S. and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter, 2015. 472: p. 66-77. 32. Jiang, X., Y. Wang, and M. Li, Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter. Scientific Reports, 2014. 4: p. 6070. 33. Ho, C.-C. and S.-J. Ding, The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. Journal of Materials Science: Materials in Medicine, 2013. 24(10): p. 2381-2390. 34. Della Vecchia, N.F., et al., Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir, 2014. 30(32): p. 9811-9818. 35. Feng, L., et al., Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrasonics Sonochemistry, 2017. 34: p. 609-615. 36. Ganguly, S., et al., Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. RSC Advances, 2016. 6(107): p. 105350-105362. 37. Soares, J.d.P., et al., Thermal behavior of alginic acid and its sodium salt. Eclética Química, 2004. 29(2): p. 57-64.
|