(3.238.240.197) 您好!臺灣時間:2021/04/12 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭怡馨
研究生(外文):Yi-Hsin Cheng
論文名稱:硫化銅修飾二硫化錫摻入界面活性劑形成奈米異質結構來提升光催化二氧化碳還原效率之研究
論文名稱(外文):Cu2-xS Decorated on SnS2 Nanocomposite: Boosting up Photocatalytic CO2 Reduction by Surfactant Modification
指導教授:何郡軒
指導教授(外文):Jinn-Hsuan Ho
口試委員:戴龑林麗瓊陳貴賢
口試委員(外文):Yian-TaiLi-Chyong ChenKuei-Hsien Chen
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:水熱法光觸媒光催化還原二氧化碳界面活性劑
外文關鍵詞:Hydrothermal synthesisPhotocatalytic CO2 reductionSurfactantPhotocatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用人造光合成作用系統將二氧化碳還原成碳氫化合物,作為未來新興的替代性能源,以期改善愈趨被重視的環境及能源議題。本研究以溶劑熱法混合界面活性劑合成二硫化錫與硫化銅,由於兩種材料的能隙大小與位置適合讓二氧化碳還原反應發生,且以異質接面方式混合兩種半導體材料,能夠有效的將激發後所產生的電子與電洞分離,降低電子-電洞輻射再結合的現象,使其有較多的激子飄移至材料表面進行二氧化碳還原反應,並利用界面活性劑,證明能夠增加粒子的分散性、結晶性,提升二氧化碳還原反應的效率。在本研究中,首先分析晶體結構、成分及光學性質等特性,再利用氣相層析,發現二硫化錫與硫化銅異質結構能夠產出乙醛與極微量的乙醇和甲醇,可達到約0.061%,藉由控制二硫化錫、硫化銅的混合比例來優化反應效率,並混合界面活性劑與其異質結構配合,能夠獲得更高產量的乙醛產物,並有效地提高光化學量子轉換效率;在不同比例下,本研究發現以莫耳比1:1的比例混合二硫化錫與硫化銅並混合莫耳比2莫耳的陽性界面活性劑CTAB,相較於其他比例,光化學量子轉換效率能提高至0.313%,從此研究,證明利用p-n異質接面結構方法並搭配界面活性劑,能增加二硫化錫與硫化銅分散的均勻度,縮小其粒子半徑及提升結晶性,並有效提高光觸媒在二氧化碳還原反應上的效率。
This study uses an artificial photosynthesis system to reduce carbon dioxide to hydrocarbons as an alternative energy source with an aim to improve the environmental and energy issues. In this study, the solvothermal method using Sn, Cu, S with different mixed surfactants was used to synthesize tin disulfide and copper sulfide. The energy band gap and position of the two materials are suitable for carbon dioxide reduction reaction, and the two semiconductor materials can be mixed as hetero-junctions. It can effectively separate electrons and holes after excitation, reduce the phenomenon of electron-hole radiation recombination, and make more excitons drift to the surface of the material for carbon dioxide reduction reaction. We use the surfactant and prove that it can increase the dispersibility of particles, enhance crystallinity, and improve the quantum efficiency of carbon dioxide reduction reaction. In this study, first we analyze the characteristics of crystal structure, composition, and optical properties, and then perform gas chromatography studio. We found that the hetero-structure of tin disulfide and copper sulfide can produce acetaldehyde and small amounts of ethanol and methanol. With the photochemical quantum conversion efficiency up to about 0.061%. The reaction quantum efficiency was optimized by controlling the mixing ratio of tin disulfide, copper disulfide and changing the surfactant. By mixing the surfactant with its hetero-structure, a higher yield of acetaldehyde product can be obtained effectively. Compared with different ratios, photochemical quantum conversion efficiency can be increased to 0.313% with tin sulfide and copper sulfide mixed in a ratio of 1:1:2 with the cationic surfactant CTAB. From this study, it is proved that p-n hetero-junction structure with surfactant can increase the uniformity and dispersion of tin disulfide and copper sulfide, enhance crystallinity, and improve the photocatalyst carbon dioxide reduction reaction effectively.
中文摘要 5
Abstract 6
圖目錄 12
表目錄 15
第一章、緒論 16
1-1 前言 16
1-2 研究動機與目的 17
第二章、文獻回顧 19
2-1二氧化碳還原技術發展 19
2-1-1 金屬氧化物觸媒系統 24
2-1-2金屬硫化物觸媒系統 37
2-1-3半導體複合材料觸媒系統 38
2-2硫化銅(Cu2-xS)半導體材料性質 43
2-3二硫化錫(SnS2)半導體材料性質 46
2-4界面活性劑(Surfactant) 50
2-5溶劑熱法(Solvothermal method) 51
第三章、實驗設備與方法 54
3-1 儀器設備 54
3-2 實驗藥品與器材 55
3-3 實驗步驟 56
3-4 實驗方法 58
3-4-1 溶劑熱法(Solvothermal method)合成 58
3-4-2 離心法(Centrifugation)合成粉末 58
3-5 材料鑑定與分析 59
3-5-1 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope,FE-SEM) 59
3-5-2 X光繞射分析儀(X-ray diffraction,XRD) 61
3-5-3 拉曼振動光譜儀(Raman Spectrum, Raman) 62
3-5-4 紫外-可見光譜儀(UV-Visible Spectrum) 63
3-5-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 64
3-5-6 能量色散X射線光譜(Energy Dispersive Spectroscopy, EDS) 66
3-6 二氧化碳還原系統 67
3-6-1 氣相層析儀-火焰離子化偵測器(GC-FID)系統 67
3-6-2 光源系統與實驗參數 69
第四章、實驗結果與討論 71
4-1 SnS2/Cu2-xS性質分析 71
4-1-1 SnS2/Cu2-xS異質結構的表面輪廓分析 73
4-1-2 不同濃度SnS2/Cu2-xS異質結構的晶體結構分析 75
4-1-3不同界面活性劑環境下成長之SnS2/Cu2-xS表面輪廓分析 78
4-1-4不同界面活性劑環境下成長之SnS2/Cu2-xS晶體結構分析 80
4-1-5光學性質分析 81
4-2 利用GC-FID測量光觸媒效率 83
4-2-1不同濃度的SnS2/Cu2-xS 與SnS2/Cu2-xS混合界面活性劑的生成產物與產量比較 84
4-2-2量子轉換效率比較 86
4-3最佳化SnS2/Cu2-xS與不同CTAB濃度比例下所合成之混合相 87
4-3-1不同濃度界面活性劑CTAB環境下成長之SnS2/Cu2-xS表面輪廓分析 87
4-3-2 SnS2/Cu2-xS與不同濃度比例之CTAB混合相的晶體分析 89
4-3-3 元素分析 93
4-3-4不同比例之SnS2/Cu2-xS及CTAB混合相的生成產物與產量比較 95
4-3-5量子轉換效率比較 96
第五章、結論 97
第六章、參考資料 98
Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014,39, 426-443.
Wu, X.; Yu, Y.; Qin, Z.; Zhang, Z., The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 2014,63, 1339-1346.
Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978,275, 115 -116.
Qu, Y.; Duan, X., Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews 2013, 42 (7), 2568-2580.
Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F. X.; Van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in biotechnology 2010, 28 (7), 371-380.
Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S., Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology advances 2011, 29 (2), 189-198.
Zeng, X.; Danquah, M. K.; Chen, X. D.; Lu, Y., Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews 2011, 15 (6), 3252-3260.
Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M.; Junge, W.; Kramer, D. M.; Melis, A., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. science 2011, 332 (6031), 805-809.
Chueh, W. C.; Haile, S. M., Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem 2009, 2 (8), 735-739.
Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M., Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. Journal of Electroanalytical Chemistry 1996, 412 (1-2), 125-132.
Jitaru, M.; Lowy, D.; Toma, M.; Toma, B.; Oniciu, L., Electrochemical reduction of carbon dioxide on flat metallic cathodes. Journal of Applied Electrochemistry 1997, 27 (8), 875-889.
Sutin, N.; Creutz, C.; Fujita, E., Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments on Inorganic Chemistry 1997, 19 (2), 67-92.
Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis today 2006, 115 (1-4), 2-32.
Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & engineering chemistry research 2006, 45 (8), 2558-2568.
Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7), 745-758.
Morris, A. J.; Meyer, G. J.; Fujita, E., Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Accounts of Chemical Research 2009, 42 (12), 1983-1994.
Biswas, P.; Wang, W.-N.; An, W.-J., The energy-environment nexus: aerosol science and technology enabling solutions. Frontiers of Environmental Science & Engineering in China 2011, 5 (3), 299.
Windle, C. D.; Perutz, R. N., Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coordination Chemistry Reviews 2012, 256 (21-22), 2562-2570.
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638.
Qu, Y. D., X. Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews2013,Rev. 42, 2568–2580.
Liu, B.-J.; Torimoto, T.; Yoneyama, H., Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry 1998, 113 (1), 93-97.
Wang, W.-N.; Soulis, J.; Yang, Y. J.; Biswas, P., Comparison of CO2 photoreduction systems: a review. Aerosol and Air Quality Research 2014, 14 (2), 533-549.
Inoue, T.,; Fujishima, A.,; Konishi, S. and Honda, K, Photoelectrocatalytic Reduction of Carbon Dioxide in Aquesous Suspensions of Semiconductor Powders. Nature 1979,277: 637.
Koffyberg, F.; Benko, F., A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO. Journal of Applied Physics 1982, 53 (2), 1173-1177.
Matsumoto, Y., Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. Journal of Solid State Chemistry 1996, 126 (2), 227-234.
De Jongh, P. E.,; Vanmaekelbergh, D.,; Kelly, J. J., Cu2O:a catalyst for the photochemical decomposition of water. Chemical Communications 1999, (12), 1069-1070.
Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X.-Y., Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. The Journal of Physical Chemistry C 2008, 112 (22), 8419-8423.
Xu, Y.; Schoonen, M. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 2000, 85 (3-4), 543-556.
Samsun Nahar ,; M. F. M. Zain ,; Abdul Amir H. Kadhum ,; Hassimi Abu Hasan and Md. Riad Hasan . Advances in Photocatalytic CO2 Reduction with Water: A Review Materials 2017, 10, 629.
Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B Environ. 2010, 100, 386–392.
Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y.A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. 2010, 122, 6544–6548.
Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 2010, 132, 14385–14387.
Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag co-catalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.
Zhang, Q.; Li, Y.; Ackerman, E.A.; Gajdardziska-Josifovska, M.; Li, H. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A Gen. 2011, 400, 195–202.
Stock, M.; Dunn, S. LiNbO3—A polar material for solid-gas artificial photosynthesis. Ferroelectrics 2011, 419, 9–13.
Tu, W.; Zhou, Y.; Liu, Q.; Tian, Z.; Gao, J.; Chen, X.; Zhang, H.; Liu, J.; Zou, Z. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater. 2012, 22, 1215–1221.
Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5, 262–268.
Xi, G.; Ouyang, S.; Li, P.; Ye, J.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 2012, 51, 2395–2399.
Liu, Q.; Zhou, Y.; Tian, Z.; Chen, X.; Gao, J.; Zou, Z. Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J. Mater. Chem. 2012, 22, 2033–2038.
Li, X.; Zhuang, Z.; Li, W.; Pan, H. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A Gen. 2012, 429, 31–38.
Yan, S.; Yu, H.; Wang, N.; Li, Z.; Zou, Z. Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chem. Commun. 2012, 48, 1048–1050.
Park, H.-A.; Choi, J.H.; Choi, K.M.; Lee, D.K.; Kang, J.K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 5304–5307.
Wang, W.-N., An,; W.-J., Ramalingam, B.,; Mukherjee, S.,; Niedzwiedzki, D.M., Gangopadhyay, S.,; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.
Li, X.; Pan, H.; Li, W.; Zhuang, Z. Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Appl. Catal. A Gen. 2012, 413, 103–108.
Núñez, J.; Víctor, A.; Jana, P.; Coronado, J.M.; Serrano, D.P. Effect of copper on the performance of ZnO and ZnO 1−xNx oxides as CO2 photoreduction catalysts. Catal. Today 2013, 209, 21–27.
Mankidy, B.D.; Joseph, B.; Gupta, V.K. Photo-conversion of CO2 using titanium dioxide: Enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 2013, 24, 405402.
Ong, W.-J.; Gui, M.M.; Chai, S.-P.; Mohamed, A.R. Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 2013, 3, 4505–4509.
Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper (i) oxide co-catalysts with a core–shell structure. Angew. Chem. 2013, 125, 5888–5891.
Zhang, Z.; Wang, Z.; Cao, S.-W.; Xue, C. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939–25947.
Tahir, M.; Amin, N.S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites. Appl. Catal. B Environ. 2013, 142, 512–522.
Li, P.; Xu, H.; Liu, L.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J. Constructing cubic–orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A 2014, 2, 5606–5609.
He, Z.; Wang, D.; Fang, H.; Chen, J.; Song, S. Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light. Nanoscale 2014, 6, 10540–10544.
Shi, H.; Chen, G.; Zhang, C.; Zou, Z. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 2014, 4, 3637–3643.
Cao, S.-W.; Liu, X.-F.; Yuan, Y.-P.; Zhang, Z.-Y.; Liao, Y.-S.; Fang, J.; Loo, S.C.J.; Sum, T.C.; Xue, C. Solar-to-fuels conversion over In2O3/gC3N4 hybrid photocatalysts. Appl. Catal. B Environ. 2014, 147, 940–946.
He, Y.; Zhang, L.; Fan, M.; Wang, X.; Walbridge, M.L.; Nong, Q.; Wu, Y.; Zhao, L. Z-scheme SnO2−x/gC3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 2015, 137, 175–184.
Ong, W.-J.; Putri, L.K.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Heterostructured AgX/gC3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal. B Environ. 2016, 180, 530–543.
Wang, D.; Yu, Y.; Zhang, Z.; Fang, H.; Chen, J.; He, Z.; Song, S. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light. Environ. Sci. Pollut. Res. 2016, 23, 18369–18378.
Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M.; An, X.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J., Interfacial charge separation in Cu2O/RuOx as a visible light driven CO2 reduction catalyst. Physical Chemistry Chemical Physics 2014, 16 (13), 5922-5926.
Yahaya, A.; Gondal, M.; Hameed, A., Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chemical physics letters 2004, 400 (1-3), 206-212.
Liu, Y.; Huang, B.; Dai, Y.; Zhang, X.; Qin, X.; Jiang, M.; Whangbo, M.-H., Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications 2009, 11 (3), 210-213.
Kumagai, H.; Sahara, G.; Maeda, K.; Higashi, M.; Abe, R.; Ishitani, O., Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru (ii)–Re (i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chemical science 2017, 8 (6), 4242-4249.
Ida, S.; Yamada, K.; Matsunaga, T.; Hagiwara, H.; Ishihara, T.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y., Photoelectrochemical hydrogen production from water using p-type CaFe2O4 and n-Type ZnO. Electrochemistry 2011, 79 (10), 797-800.
Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z., High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society 2010, 132 (41), 14385-14387.
Liu, Q.; Zhou, Y.; Tian, Z.; Chen, X.; Gao, J.; Zou, Z., Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. Journal of Materials Chemistry 2012, 22 (5), 2033-2038.
Guan, G.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A., Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Applied catalysis A: general 2003, 249 (1), 11-18.
張華生,調變銅錫硫三元化合物之硫含量應用於高效率可見光二氧化碳還原與轉換之研究. 2017.
Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A., Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. Journal of the American Chemical Society 2014, 136 (26), 9236-9239.
Zubair, M.; Razzaq, A.; Grimes, C. A.; In, S.-I., Cu2ZnSnS4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4. Journal of CO2 Utilization 2017, 20, 301-311.
Kim, K.; Razzaq, A.; Sorcar, S.; Park, Y.; Grimes, C. A.; In, S.-I., Hybrid mesoporous Cu2ZnSnS4(CZTS)–TiO2 photocatalyst for efficient photocatalytic conversion of CO2 into CH4 under solar irradiation. RSC Advances 2016, 6 (45), 38964-38971.
Cao, Qi,; Che, Renchao,; Chen, Nan, Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Applied Catalysis, B: Environmental 2015, 162, 187-195.
Travis H. Larsen,; Michael Sigman, Ali Ghezelbash,; R. Christopher Doty,; Brian A. Korgel, Solventless Synthesis of Copper Sulfide Nanorods by Thermolysis of a Single Source Thiolate-Derived Precursor. J. Am. Chem. Soc. 2003, 125, 19, 5638-5639.
Ling Chen,; Yu-Biao Chen,; Li-Ming Wu, Synthesis of Uniform Cu2S Nanowires from Copper−Thiolate Polymer Precursors by a Solventless Thermolytic Method. J. Am. Chem. Soc. 2004, 126, 50, 16334-16335.
Qingyi Lu,; Feng Gao,; Dongyuan Zhao, One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. Nano Lett. 2002, 27725-728.
Yanjie Su,; Xiaonan Lu,; Minmin Xie,; Huijuan Geng,; Hao Wei,; Zhi Yang,;
Yafei Zhang, A one-pot synthesis of reduced graphene oxide–Cu2S quantum dot hybrids for optoelectronic devices. Nanoscale, 2013, 5, 8889-8893.
Enesca, A,; Isac, L,; Duta, A, Hybrid Structure Comprised Of SnO2, ZnO And Cu2S Thin Film Semiconductors With Controlled Optoelectric And Photocatalytic Properties, THIN SOLID FILMS, 2013, 542, 31-37.
Pralay K. Santra,; Prashant V. Kamat, Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 5, 2508-2511.
Caofeng Pan,; Simiao Niu,; Yong Ding,; Lin Dong, Ruomeng Yu,; Ying Liu,; Guang Zhu,; Zhong Lin Wang, Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. Nano Lett.2012, 12, 6, 3302-3307.
S. OKTIK,; G.J. RUSSELL ,; J. WOODS, Single crystal Zn xCd 1- xS/Cu 2S photovoltaic cells. Journal of Crystal Growth, 1982, 0022-0248.
Jia-Yaw Chang,; Li-Fong Su,; Chen-Hei Li,; Chia-Chan Chang,; Jie-Mo Lin, Efficient “green” quantum dot-sensitized solar cells based on Cu2S–CuInS2–ZnSe architecture. Chem. Commun., 2012, 48, 4848-4850.
Zhenxiao Pan,; Ke Zhao,; Jin Wang,; Hua Zhang,; Yaoyu Feng,; Xinhua Zhong,
Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano 2013, 7, 6, 5215-5222.
Yong Liu,; Yonghui Deng,; Zhenkun Sun,; Jing Wei,; Gengfeng Zheng,; Abdullah M. Asiri,; Sher Bahader Khan,; Mohammed M. Rahman,; Dongyuan Zhao,
One-Pot Synthesis of Thermally Stable Gold@Mesoporous Silica Core–Shell Nanospheres With Catalytic Activity. Nano Research, 2013, 6(12), 871-879.
Jiang Denghui,; Hu, Wenbin,; Wang Haoran,; Shen Bin,; Deng Yida, Synthesis, formation mechanism and photocatalytic property of nanoplate-based copper sulfide hierarchical hollow spheres. The Chemical engineering journal, 2012, 189-190.
Peng Meng,; Ma Li-Li,; Zhang Yong-Gang,; Tan Ming,; Wang Jian-Bo,; Yu Ying, Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. In Materials Research Bulletin, 2009, 44(9), 1834-1841.
Bessekhouad, Y.; Brahimi, R.; Hamdini, F.; Trari, M, Cu2S/TiO2 heterojunction applied to visible light Orange II degradation. Journal of Photochemistry and Photobiology A: Chemistry 2012, 248, 15-23.
Li, S.; Yu, K.; Wang Y.; Zhang, Z.; Song, C.; Yin, H.; Ren, Q.; Zhu, Z, Cu2S@ZnO hetero-nanostructures: facile synthesis, morphology-evolution and enhanced photocatalysis and field emission properties. CrystEngComm, 2013, 15 (9), 1753-1761.
Chen, Y.; Qin, Z.; Wang, X.; Guo, X.; Guo, L., Noble-metal-free Cu2S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p–n junction structure. RSC Advances 2015, 5 (23), 18159-18166.
Schneider, S.; Ireland, J. R.; Hersam, M. C.; Marks, T. J., Copper(I) tert-butylthiolato clusters as single-source precursors for high-quality chalcocite thin films. Chemistry of materials 2007, 19 (11), 2780-2785.
Isac, L.; Duta, A.; Kriza, A.; Manolache, S.; Nanu, M., Copper sulfides obtained by spray pyrolysis — Possible absorbers in solid-state solar cells. Thin Solid Films 2007, 515 (15), 5755-5758.
Martinson, A. B.; Riha, S. C.; Thimsen, E.; Elam, J. W.; Pellin, M. J., Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. Energy & Environmental Science 2013, 6 (6), 1868-1878.
Mousavi-Kamazani, M.; Salavati-Niasari, M.; Sadeghinia, M., Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation. Superlattices and Microstructures 2013, 63, 248-257.
Yu, X.; An, X., Controllable hydrothermal synthesis of Cu2S nanowires on the copper substrate. Materials Letters 2010, 64 (3), 252-254.
Chen, L.; Zou, Y.; Qiu, W.; Chen, F.; Xu, M.; Shi, M.; Chen, H., Hydrothermal synthesis of Cu2S nanocrystalline thin film on indium tin oxide substrate: Morphology, optical and electrical properties. Thin Solid Films 2012, 520 (16), 5249-5253.
Li, J.; Li, K.; Qiao, R.; Ying, T., Template-free synthesis of CuSCN and Cu2S crystallites with a facile hydrothermal method at different temperatures. Materials Science in Semiconductor Processing 2011, 14 (3-4), 306-310.
Mousavi-Kamazani, M.; Zarghami, Z.; Salavati-Niasari, M., Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. The Journal of Physical Chemistry C 2016, 120 (4), 2096-2108.
Yadav, S.; Bajpai, P., Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization. Nano-Structures & Nano-Objects 2017, 10, 151-158.
Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S., Freestanding tin disulfide single‐layers realizing efficient visible‐light water splitting. Angewandte Chemie International Edition 2012, 51 (35), 8727-8731.
Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y., Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature communications 2018, 9 (1), 169.
Ma, J.; Lei, D.; Mei, L.; Duan, X.; Li, Q.; Wang, T.; Zheng, W., Plate-like SnS2 nanostructures: hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 2012, 14 (3), 832-836.
Ma, D.; Zhou, H.; Zhang, J.; Qian, Y., Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals. Materials Chemistry and Physics 2008, 111 (2-3), 391-395.
Umar, A.; Akhtar, M.; Dar, G.; Abaker, M.; Al-Hajry, A.; Baskoutas, S., Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 2013, 114, 183-190.
Liu, H.; Su, Y.; Chen, P.; Wang, Y., Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. Journal of Molecular Catalysis A: Chemical 2013, 378, 285-292.
Lei, Y.; Song, S.; Fan, W.; Xing, Y.; Zhang, H., Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. The Journal of Physical Chemistry C 2009, 113 (4), 1280-1285.
Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J., A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis 2017, 352, 532-541.
Zhang, Y. C.; Du, Z. N.; Zhang, M., Hydrothermal synthesis of SnO2/SnS2 nanocomposite with high visible light-driven photocatalytic activity. Materials Letters 2011, 65 (19-20), 2891-2894.
Zhang, Y. C.; Du, Z. N.; Li, K. W.; Zhang, M.; Dionysiou, D. D., High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. ACS applied materials & interfaces 2011, 3 (5), 1528-1537.
Jinsong Liu,; Zhengying Wu,; Kongjun Zhu,; Ziquan Li,; Bing Feng,; Qilin Gu,; Pengcheng Liu,; Shuo Zhang,; Yuncheng You,; Bijun Wang,; Jing Wang,; Jinhao Qiu,; Effects of surfactant and reaction time on the formation and photocatalytic performance of Cu2S thin films grown in situ on Cu foil by hydrothermal method. Journal of Alloys and Compounds 2016, 685, 266-271.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔