|
1. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium‐Ion Batteries. Advanced Materials 2018, 30, 1800561. 2. Choi, J. W.; Aurbach, D., Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities. Nature Reviews Materials 2016, 1, 16013. 3. Armand, M.; Tarascon, J.-M., Building Better Batteries. nature 2008, 451, 652. 4. Nishi, Y., Lithium Ion Secondary Batteries; Past 10 Years and the Future. Journal of Power Sources 2001, 100, 101-106. 5. Nishi, Y., The Development of Lithium Ion Secondary Batteries. The Chemical Record 2001, 1, 406-413. 6. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-Ion Batteries. A Look into the Future. Energy & Environmental Science 2011, 4, 3287-3295. 7. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives. Energy & Environmental Science 2016, 9, 1955-1988. 8. Arya, A.; Sharma, A., Electrolyte for Energy Storage/Conversion (Li+, Na+, Mg 2+) Devices Based on Pvc and Their Associated Polymer: A Comprehensive Review. Journal of Solid State Electrochemistry 2019, 23, 997-1059. 9. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical reviews 2004, 104, 4303-4418. 10. Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q., Beyond Lithium Ion Batteries: Higher Energy Density Battery Systems Based on Lithium Metal Anodes. Energy Storage Materials 2018, 12, 161-175. 11. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical reviews 2014, 114, 11503-11618. 12. Zhang, S. S., A Review on Electrolyte Additives for Lithium-Ion Batteries. Journal of Power Sources 2006, 162, 1379-1394. 13. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the Use of Vinylene Carbonate (Vc) as an Additive to Electrolyte Solutions for Li-Ion Batteries. Electrochimica Acta 2002, 47, 1423-1439. 14. Xia, J.; Ma, L.; Aiken, C.; Nelson, K.; Chen, L.; Dahn, J., Comparative Study on Prop-1-Ene-1, 3-Sultone and Vinylene Carbonate as Electrolyte Additives for Li (Ni1/3mn13co1/3) O2/Graphite Pouch Cells. Journal of The Electrochemical Society 2014, 161, A1634-A1641. 15. Hu, Y.; Kong, W.; Li, H.; Huang, X.; Chen, L., Experimental and Theoretical Studies on Reduction Mechanism of Vinyl Ethylene Carbonate on Graphite Anode for Lithium Ion Batteries. Electrochemistry communications 2004, 6, 126-131. 16. Li, J.; Yao, W.; Meng, Y. S.; Yang, Y., Effects of Vinyl Ethylene Carbonate Additive on Elevated-Temperature Performance of Cathode Material in Lithium Ion Batteries. The Journal of Physical Chemistry C 2008, 112, 12550-12556. 17. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of Fluoroethylene Carbonate (Fec) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes. Langmuir 2011, 28, 965-976. 18. Ma, L.; Xia, J.; Xia, X.; Dahn, J., The Impact of Vinylene Carbonate, Fluoroethylene Carbonate and Vinyl Ethylene Carbonate Electrolyte Additives on Electrode/Electrolyte Reactivity Studied Using Accelerating Rate Calorimetry. Journal of The Electrochemical Society 2014, 161, A1495-A1498. 19. Li, B.; Xu, M.; Li, T.; Li, W.; Hu, S., Prop-1-Ene-1, 3-Sultone as Sei Formation Additive in Propylene Carbonate-Based Electrolyte for Lithium Ion Batteries. Electrochemistry Communications 2012, 17, 92-95. 20. Nelson, K.; Xia, J.; Dahn, J., Studies of the Effect of Varying Prop-1-Ene-1, 3-Sultone Content in Lithium Ion Pouch Cells. Journal of The Electrochemical Society 2014, 161, A1884-A1889. 21. Jain, A.; Shin, Y.; Persson, K. A., Computational Predictions of Energy Materials Using Density Functional Theory. Nature Reviews Materials 2016, 1, 15004. 22. Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G., Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput Ab Initio Calculations. Chemistry of Materials 2011, 23, 3495-3508. 23. Jain, A.; Hautier, G.; Moore, C.; Kang, B.; Lee, J.; Chen, H.; Twu, N.; Ceder, G., A Computational Investigation of Li9m3 (P2o7) 3 (Po4) 2 (M= V, Mo) as Cathodes for Li Ion Batteries. Journal of The Electrochemical Society 2012, 159, A622-A633. 24. Kauwe, S. K.; Rhone, T. D.; Sparks, T. D., Data-Driven Studies of Li-Ion-Battery Materials. Crystals 2019, 9, 54. 25. Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J., Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials. Chemistry of Materials 2018, 31, 342-352. 26. Katcho, N. A.; Carrete, J.; Reynaud, M.; Rousse, G.; Casas-Cabanas, M.; Mingo, N.; Rodríguez-Carvajal, J.; Carrasco, J., An Investigation of the Structural Properties of Li and Na Fast Ion Conductors Using High-Throughput Bond-Valence Calculations and Machine Learning. Journal of Applied Crystallography 2019, 52, 148-157. 27. Chen, H.; Hautier, G.; Jain, A.; Moore, C.; Kang, B.; Doe, R.; Wu, L.; Zhu, Y.; Tang, Y.; Ceder, G., Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally. Chemistry of Materials 2012, 24, 2009-2016. 28. Wang, S.; Wang, Z.; Setyawan, W.; Mingo, N.; Curtarolo, S., Assessing the Thermoelectric Properties of Sintered Compounds Via High-Throughput Ab-Initio Calculations. Physical Review X 2011, 1, 021012. 29. Madsen, G. K., Automated Search for New Thermoelectric Materials: The Case of Liznsb. Journal of the American Chemical Society 2006, 128, 12140-12146. 30. Gaultois, M. W.; Oliynyk, A. O.; Mar, A.; Sparks, T. D.; Mulholland, G. J.; Meredig, B., Perspective: Web-Based Machine Learning Models for Real-Time Screening of Thermoelectric Materials Properties. APL Materials 2016, 4, 053213. 31. Sparks, T. D.; Gaultois, M. W.; Oliynyk, A.; Brgoch, J.; Meredig, B., Data Mining Our Way to the Next Generation of Thermoelectrics. Scripta Materialia 2016, 111, 10-15. 32. Greeley, J.; Nørskov, J. K.; Mavrikakis, M., Electronic Structure and Catalysis on Metal Surfaces. Annual review of physical chemistry 2002, 53, 319-348. 33. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chemical reviews 2004, 104, 4271-4302. 34. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 1980, 15, 783-789. 35. J.R. Dahn; U. von Sacken; M.W. Juzkow; Al‐Janaby, H., Rechargeable Linio2/Carbon Cells Journal of The Electrochemical Society 1991, 138 2207-2211. 36. Yazami, R.; Touzain, P., A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. Journal of Power Sources 1983, 9, 365-371. 37. Sekai, K.; Azuma, H.; Omaru, A.; Fujita, S.; Imoto, H.; Endo, T.; Yamaura, K.; Nishi, Y.; Mashiko, S.; Yokogawa, M., Lithium-Ion Rechargeable Cells with Licoo2 and Carbon Electrodes. Journal of power sources 1993, 43, 241-244. 38. Pistoia, G., Lithium Batteries: New Materials, Developments and Perspectives; Elsevier Amsterdam, 1994; Vol. 5. 39. Dai, B.-Q.; Zhang, G.-L., A Dft Study of Hbn Compared with Graphite in Forming Alkali Metal Intercalation Compounds. Materials chemistry and physics 2003, 78, 304-307. 40. Noel, M.; Santhanam, R., Electrochemistry of Graphite Intercalation Compounds. Journal of Power Sources 1998, 72, 53-65. 41. Mizutani, Y.; Ihara, E.; Abe, T.; Asano, M.; Harada, T.; Ogumi, Z.; Inaba, M., Preparation of Alkali Metal Graphite Intercalation Compounds in Organic Solvents. Journal of Physics and Chemistry of Solids 1996, 57, 799-803. 42. Maksimova, N.; Sorokina, N.; Shornikova, O.; Avdeev, V., Thermal Properties of Graphite Intercalation Compounds with Acids. Journal of Physics and Chemistry of Solids 2004, 65, 177-180. 43. Chuan, X.; Chen, D.; Zhou, X., Electrical Properties of Expanded Graphite Intercalation Compounds. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2001, 17, 371-374. 44. Maluangnont, T.; Lerner, M. M.; Gotoh, K., Synthesis of Ternary and Quaternary Graphite Intercalation Compounds Containing Alkali Metal Cations and Diamines. Inorganic chemistry 2011, 50, 11676-11682. 45. Kang, F.; Inagaki, M.; Toyoda, M., Exfoliation of Graphite Via Intercalation Compounds. Chemistry And Physics Of Carbon. Series: Chemistry and Physics of Carbon, ISBN: 978-0-8247-4088-7. CRC Press, Edited by Ljubisa Radovic, vol. 29, pp. 1-69 2004, 29, 1-69. 46. Savoskin, M. V.; Yaroshenko, A. P.; Whyman, G.; Mestechkin, M. M.; Mysyk, R. D.; Mochalin, V., Theoretical Study of Stability of Graphite Intercalation Compounds with Brønsted Acids. Carbon 2003, 41, 2757-2760. 47. Maluangnont, T.; Sirisaksoontorn, W.; Lerner, M. M., A Comparative Structural Study of Ternary Graphite Intercalation Compounds Containing Alkali Metals and Linear or Branched Amines. Carbon 2012, 50, 597-602. 48. Dunaev, A.; Arkhangelsky, I.; Zubavichus, Y. V.; Avdeev, V., Preparation, Structure and Reduction of Graphite Intercalation Compounds with Hexachloroplatinic Acid. Carbon 2008, 46, 788-795. 49. Dimiev, A. M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J. M., Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS nano 2013, 7, 2773-2780. 50. Özmen-Monkul, B.; Lerner, M. M., The First Graphite Intercalation Compounds Containing Tris (Pentafluoroethyl) Trifluorophosphate. Carbon 2010, 48, 3205-3210. 51. Isaev, Y. V.; Lenenko, N.; Gumileva, L.; Buyanovskaya, A.; Novikov, Y. N.; Stumpp, E., A Novel Type of Reaction in the Chemistry of Graphite Intercalation Compounds. The Preparation of Alkali Metal Graphite Intercalation Compounds by Ion Exchange Reactions. Carbon 1997, 35, 563-566. 52. Datta, M. K.; Kumta, P. N., In Situ Electrochemical Synthesis of Lithiated Silicon–Carbon Based Composites Anode Materials for Lithium Ion Batteries. Journal of Power Sources 2009, 194, 1043-1052. 53. Yamaki, J.-i.; Baba, Y.; Katayama, N.; Takatsuji, H.; Egashira, M.; Okada, S., Thermal Stability of Electrolytes with Lixcoo2 Cathode or Lithiated Carbon Anode. Journal of power sources 2003, 119, 789-793. 54. Takada, K., Secondary Batteries− Lithium Rechargable Systems− Lithium-Ion Electrolytes: Solid Oxide. Elsevier: 2009; pp 328-336. 55. Besenhard, J.; Winter, M.; Yang, J.; Biberacher, W., Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes. Journal of Power Sources 1995, 54, 228-231. 56. Wagner, M. R.; Albering, J.; Moeller, K.-C.; Besenhard, J.; Winter, M., Xrd Evidence for the Electrochemical Formation of Li+ (Pc) Ycn-in Pc-Based Electrolytes. Electrochemistry communications 2005, 7, 947-952. 57. Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. w.; Kim, M. H., Origin of Graphite Exfoliation an Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society 2000, 147, 4391-4398. 58. Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. Journal of The Electrochemical Society 1974, 121, 1457-1459. 59. Xu, K.; Ding, M. S.; Jow, T. R., Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of the electrochemical Society 2001, 148, A267-A274. 60. Ue, M.; Mori, S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent. Journal of the Electrochemical Society 1995, 142, 2577-2581. 61. Ding, M. S.; Jow, T. R., How Conductivities and Viscosities of Pc-Dec and Pc-Ec Solutions of Libf4, Lipf6, Libob, Et4 Nbf 4, and Et4 Npf 6 Differ and Why. Journal of The Electrochemical Society 2004, 151, A2007-A2015. 62. Tobishima, S.-i.; Yamaji, A., Electrolytic Characteristics of Mixed Solvent Electrolytes for Lithium Secondary Batteries. Electrochimica Acta 1983, 28, 1067-1072. 63. Nanjundiah, C.; Goldman, J.; Dominey, L.; Koch, V., Electrochemical Stability of Limf6 (M= P, as, Sb) in Tetrahydrofuran and Sulfolane. Journal of the Electrochemical Society 1988, 135, 2914-2917. 64. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard Investigations of Liclo4/Dioxolane Electrolyte. Journal of The Electrochemical Society 1980, 127, 2025-2027. 65. Jasinski, R.; Carroll, S., Thermal Stability of a Propylene Carbonate Electrolyte. Journal of The Electrochemical Society 1970, 117, 218-219. 66. Couture, L.; Desnoyers, J. E.; Perron, G., Some Thermodynamic and Transport Properties of Lithium Salts in Mixed Aprotic Solvents and the Effect of Water on Such Properties. Canadian journal of chemistry 1996, 74, 153-164. 67. Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D., Electroreduction of Graphite in Liclo4-Ethylene Carbonate Electrolyte. Characterization of the Passivating Layer by Transmission Electron Microscopy and Fourier-Transform Infrared Spectroscopy. Journal of power sources 1996, 63, 33-39. 68. Yoshimatsu, I.; Hirai, T.; Yamaki, J. i., Lithium Electrode Morphology During Cycling in Lithium Cells. Journal of the Electrochemical Society 1988, 135, 2422-2427. 69. Desjardins, C.; Cadger, T.; Salter, R.; Donaldson, G.; Casey, E., Lithium Cycling Performance in Improved Lithium Hexafluoroarsenate/2‐Methyl Tetrahydrofuran Electrolytes. Journal of The Electrochemical Society 1985, 132, 529-533. 70. Zhang, S.; Xu, K.; Jow, T., Low-Temperature Performance of Li-Ion Cells with a Libf 4-Based Electrolyte. Journal of Solid State Electrochemistry 2003, 7, 147-151. 71. Zhang, S. S.; Xu, K.; Jow, T. R., Study of Libf4 as an Electrolyte Salt for a Li-Ion Battery. Journal of The Electrochemical Society 2002, 149, A586-A590. 72. Takata, K. i.; Morita, M.; Matsuda, Y.; Matsui, K., Cycling Characteristics of Secondary Li Electrode in Libf4/Mixed Ether Electrolytes. Journal of The Electrochemical Society 1985, 132, 126-128. 73. Han, H.-B.; Zhou, S.-S.; Zhang, D.-J.; Feng, S.-W.; Li, L.-F.; Liu, K.; Feng, W.-F.; Nie, J.; Li, H.; Huang, X.-J., Lithium Bis (Fluorosulfonyl) Imide (Lifsi) as Conducting Salt for Nonaqueous Liquid Electrolytes for Lithium-Ion Batteries: Physicochemical and Electrochemical Properties. Journal of Power Sources 2011, 196, 3623-3632. 74. Zhou, H.; Liu, F.; Li, J., Preparation, Thermal Stability and Electrochemical Properties of Liodfb. Journal of Materials Science & Technology 2012, 28, 723-727. 75. LIU, P.; LI, F.; LI, J.; LU, H.; ZHANG, Z.; LAI, Y., Liodfb-Teabf 4 Composite Electrolyte for Li-Ion Battery and Double-Layer Capacitor. ZHONGNAN DAXUE XUEBAO (ZIRAN KEXUE BAN) 2010, 41, 2079-2084. 76. Korepp, C.; Kern, W.; Lanzer, E.; Raimann, P.; Besenhard, J.; Yang, M.; Möller, K.-C.; Shieh, D.-T.; Winter, M., 4-Bromobenzyl Isocyanate Versus Benzyl Isocyanate—New Film-Forming Electrolyte Additives and Overcharge Protection Additives for Lithium Ion Batteries. Journal of power sources 2007, 174, 637-642. 77. Chen, R.; He, Z.; Wu, F., Lithium Organic Borate Salt and Sulfite Functional Electrolytes. Progress in Chemistry 2001, 23, 2-3. 78. Tarascon, J.; Guyomard, D., New Electrolyte Compositions Stable over the 0 to 5 V Voltage Range and Compatible with the Li1+ Xmn2o4/Carbon Li-Ion Cells. Solid State Ionics 1994, 69, 293-305. 79. Zhang, Q.; Qiu, C.; Fu, Y.; Ma, X., Xylene as a New Polymerizable Additive for Overcharge Protection of Lithium Ion Batteries. Chinese Journal of Chemistry 2009, 27, 1459-1463. 80. Xiang, H.; Xu, H.; Wang, Z.; Chen, C., Dimethyl Methylphosphonate (Dmmp) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes. Journal of Power Sources 2007, 173, 562-564. 81. Hao, X.; Liu, P.; Zhang, Z.; Lai, Y.; Wang, X.; Li, J.; Liu, Y., Tetraethylammonium Tetrafluoroborate as Additive to Improve the Performance of Lifepo4/Artificial Graphite Cells. Electrochemical and Solid-State Letters 2010, 13, A118-A120. 82. Edström, K.; Gustafsson, T.; Thomas, J. O., The Cathode–Electrolyte Interface in the Li-Ion Battery. Electrochimica Acta 2004, 50, 397-403. 83. Nazri, G.; Muller, R. H., Composition of Surface Layers on Li Electrodes in Pc, Liclo4 of Very Low Water Content. Journal of The Electrochemical Society 1985, 132, 2050-2054. 84. Peled, E.; Tow, D. B.; Merson, A.; Gladkich, A.; Burstein, L.; Golodnitsky, D., Composition, Depth Profiles and Lateral Distribution of Materials in the Sei Built on Hopg-Tof Sims and Xps Studies. Journal of power sources 2001, 97, 52-57. 85. Kanamura, K.; Tamura, H.; Takehara, Z.-i., Xps Analysis of a Lithium Surface Immersed in Propylene Carbonate Solution Containing Various Salts. Journal of Electroanalytical Chemistry 1992, 333, 127-142. 86. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. i., Xps Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing Libf4. Journal of the Electrochemical Society 1995, 142, 340-347. 87. Dedryvère, R.; Martinez, H.; Leroy, S.; Lemordant, D.; Bonhomme, F.; Biensan, P.; Gonbeau, D., Surface Film Formation on Electrodes in a Licoo2/Graphite Cell: A Step by Step Xps Study. Journal of Power Sources 2007, 174, 462-468. 88. Eriksson, T.; Andersson, A. M.; Bishop, A. G.; Gejke, C.; Gustafsson, T.; Thomas, J. O., Surface Analysis of Limn2 O 4 Electrodes in Carbonate-Based Electrolytes. Journal of The Electrochemical Society 2002, 149, A69-A78. 89. Eriksson, T.; Andersson, A.; Gejke, C.; Gustafsson, T.; Thomas, J. O., Influence of Temperature on the Interface Chemistry of Li X Mn2o4 Electrodes. Langmuir 2002, 18, 3609-3619. 90. Andersson, A.; Abraham, D.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K., Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. Journal of The Electrochemical Society 2002, 149, A1358-A1369. 91. Edström, K.; Herstedt, M.; Abraham, D. P., A New Look at the Solid Electrolyte Interphase on Graphite Anodes in Li-Ion Batteries. Journal of Power Sources 2006, 153, 380-384. 92. Malmgren, S.; Ciosek, K.; Hahlin, M.; Gustafsson, T.; Gorgoi, M.; Rensmo, H.; Edström, K., Comparing Anode and Cathode Electrode/Electrolyte Interface Composition and Morphology Using Soft and Hard X-Ray Photoelectron Spectroscopy. Electrochimica Acta 2013, 97, 23-32. 93. Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures. Journal of The Electrochemical Society 1996, 143, 3809-3820. 94. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Salitra, G.; Gofer, Y.; Heider, U.; Oesten, R.; Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li X Mo Y Host Materials (M= Ni, Mn). Journal of The Electrochemical Society 2000, 147, 1322-1331. 95. Aurbach, D., Review of Selected Electrode–Solution Interactions Which Determine the Performance of Li and Li Ion Batteries. Journal of Power Sources 2000, 89, 206-218. 96. Shi, F.; Ross, P. N.; Zhao, H.; Liu, G.; Somorjai, G. A.; Komvopoulos, K., A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy. Journal of the American Chemical Society 2015, 137, 3181-3184. 97. Nazri, G.; Muller, R. H., In Situ X-Ray Diffraction of Surface Layers on Lithium in Nonaqueous Electrolyte. 1984. 98. Domi, Y.; Ochida, M.; Tsubouchi, S.; Nakagawa, H.; Yamanaka, T.; Doi, T.; Abe, T.; Ogumi, Z., In Situ Afm Study of Surface Film Formation on the Edge Plane of Hopg for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2011, 115, 25484-25489. 99. Cresce, A. v.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K., In Situ and Quantitative Characterization of Solid Electrolyte Interphases. Nano letters 2014, 14, 1405-1412. 100. Jeong, S.-K.; Inaba, M.; Abe, T.; Ogumi, Z., Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: Afm Study in an Ethylene Carbonate-Based Solution. Journal of The Electrochemical Society 2001, 148, A989-A993. 101. Inaba, M.; Kawatate, Y.; Funabiki, A.; Jeong, S.-K.; Abe, T.; Ogumi, Z., Stm Study on Graphite/Electrolyte Interface in Lithium-Ion Batteries: Solid Electrolyte Interface Formation in Trifluoropropylene Carbonate Solution. Electrochimica acta 1999, 45, 99-105. 102. Inaba, M.; Siroma, Z.; Kawatate, Y.; Funabiki, A.; Ogumi, Z., Electrochemical Scanning Tunneling Microscopy Analysis of the Surface Reactions on Graphite Basal Plane in Ethylene Carbonate-Based Solvents and Propylene Carbonate. Journal of Power Sources 1997, 68, 221-226. 103. Inaba, M.; Siroma, Z.; Funabiki, A.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M., Electrochemical Scanning Tunneling Microscopy Observation of Highly Oriented Pyrolytic Graphite Surface Reactions in an Ethylene Carbonate-Based Electrolyte Solution. Langmuir 1996, 12, 1535-1540. 104. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model. Journal of The Electrochemical Society 1979, 126, 2047-2051. 105. Peled, E., Film Forming Reaction at the Lithium/Electrolyte Interface. Journal of Power Sources 1983, 9, 253-266. 106. Gabano, J.-P., Lithium Batteries. Academic Press: London/New York 1983. 107. Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E., Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. Journal of The Electrochemical Society 1987, 134, 1611-1620. 108. Peled, E.; Golodnitsky, D.; Ardel, G., Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society 1997, 144, L208-L210. 109. Peled, E.; Golodnttsky, D.; Ardel, G.; Menachem, C.; Tow, D. B.; Eshkenazy, V., The Role of Sei in Lithium and Lithium Ion Batteries. MRS Online Proceedings Library Archive 1995, 393. 110. Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C., Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The journal of physical chemistry letters 2015, 6, 4653-4672. 111. Zaban, A.; Zinigrad, E.; Aurbach, D., Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li− Solution Interphase in Polar Aprotic Systems. The Journal of Physical Chemistry 1996, 100, 3089-3101. 112. Cohen, Y. S.; Cohen, Y.; Aurbach, D., Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. The Journal of Physical Chemistry B 2000, 104, 12282-12291. 113. Gofer, Y.; Ben-Zion, M.; Aurbach, D., Solutions of Liasf6 in 1, 3-Dioxolane for Secondary Lithium Batteries. Journal of power sources 1992, 39, 163-178. 114. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High Rate and Stable Cycling of Lithium Metal Anode. Nature communications 2015, 6, 6362. 115. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L., A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nature communications 2013, 4, 1481. 116. Thomas, M.; Bruce, P.; Goodenough, J. B., Ac Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li1− X Coo2. Journal of The Electrochemical Society 1985, 132, 1521-1528. 117. Aurbach, D.; Markovsky, B.; Rodkin, A.; Levi, E.; Cohen, Y.; Kim, H.-J.; Schmidt, M., On the Capacity Fading of Licoo2 Intercalation Electrodes:: The Effect of Cycling, Storage, Temperature, and Surface Film Forming Additives. Electrochimica Acta 2002, 47, 4291-4306. 118. Dedryvere, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.; Gonbeau, D., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel Limn1. 6ni0. 4o4/Li4ti5o12 Lithium-Ion Battery. The Journal of Physical Chemistry C 2010, 114, 10999-11008. 119. Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L., Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides. Journal of The Electrochemical Society 1998, 145, 3024-3034. 120. Sloop, S. E.; Pugh, J. K.; Kerr, J. B.; Kinoshita, K., Chemical Reactivity of Pf5 and Lipf6 in Ethylene Carbonate/Dimethyl Carbonate. 121. Aurbach, D.; Weissman, I.; Schechter, A.; Cohen, H., X-Ray Photoelectron Spectroscopy Studies of Lithium Surfaces Prepared in Several Important Electrolyte Solutions. A Comparison with Previous Studies by Fourier Transform Infrared Spectroscopy. Langmuir 1996, 12, 3991-4007. 122. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I. Li Metal Anodes. Journal of The Electrochemical Society 1995, 142, 2873-2882. 123. Browning, J. F.; Baggetto, L.; Jungjohann, K. L.; Wang, Y.; Tenhaeff, W. E.; Keum, J. K.; Wood III, D. L.; Veith, G. M., In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode Limn1. 5ni0. 5o4. ACS applied materials & interfaces 2014, 6, 18569-18576. 124. Cherkashinin, G.; Motzko, M.; Schulz, N.; Späth, T.; Jaegermann, W., Electron Spectroscopy Study of Li [Ni, Co, Mn] O2/Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications. Chemistry of Materials 2015, 27, 2875-2887. 125. Ensling, D.; Cherkashinin, G.; Schmid, S.; Bhuvaneswari, S.; Thissen, A.; Jaegermann, W., Nonrigid Band Behavior of the Electronic Structure of Licoo2 Thin Film During Electrochemical Li Deintercalation. Chemistry of Materials 2014, 26, 3948-3956. 126. Pereira, D.; Williams, J., Origin and Evolution of High Throughput Screening. Brit J Pharmacol 2007, 152, 53-61. 127. Pyzer-Knapp, E. O.; Suh, C.; Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Aspuru-Guzik, A., What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. Annual Review of Materials Research 2015, 45, 195-216. 128. Samuel, A. L., Some Moral and Technical Consequences of Automation—a Refutation. Science 1960, 132, 741-742. 129. Strand, D.; Bailey, M. In Application of High Throughput Experimentation to Machine Learning Algorithms for the Development of Lithium Ion Battery Materials, Meeting Abstracts, The Electrochemical Society: 2019; pp 23-23. 130. Iwasaki, Y.; Takeuchi, I.; Stanev, V.; Kusne, A. G.; Ishida, M.; Kirihara, A.; Ihara, K.; Sawada, R.; Terashima, K.; Someya, H., Machine-Learning Guided Discovery of a High-Performance Spin-Driven Thermoelectric Material. arXiv preprint arXiv:1805.02303 2018. 131. Goldsmith, B. R.; Esterhuizen, J.; Liu, J. X.; Bartel, C. J.; Sutton, C. A., Machine Learning for Heterogeneous Catalyst Design and Discovery. AIChE-Journal 2018, 64, 2311-2323. 132. Baumes, L.; Serra, J.; Serna, P.; Corma, A., Support Vector Machines for Predictive Modeling in Heterogeneous Catalysis: A Comprehensive Introduction and Overfitting Investigation Based on Two Real Applications. Journal of combinatorial chemistry 2006, 8, 583-596. 133. Schlexer Lamoureux, P.; Winther, K.; Garrido Torres, J. A.; Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T., Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem 2019. 134. Takasao, G.; Wada, T.; Thakur, A.; Chammingkwan, P.; Terano, M.; Taniike, T., Machine Learning-Aided Structure Determination for Ticl4-Capped Mgcl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst. ACS Catalysis 2019. 135. Almasi, P. P. https://hackernoon.com/3-ways-blockchain-will-unleash-the-full-potential-of-machine-learning-3d3a4d350b1. 136. Liu, Y.; Zhao, T.; Ju, W.; Shi, S., Materials Discovery and Design Using Machine Learning. Journal of Materiomics 2017, 3, 159-177. 137. Weininger, D., Smiles, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. Journal of chemical information and computer sciences 1988, 28, 31-36. 138. Weininger, D.; Weininger, A.; Weininger, J. L., Smiles. 2. Algorithm for Generation of Unique Smiles Notation. Journal of chemical information and computer sciences 1989, 29, 97-101. 139. Sun, Y.; Wang, Y., New Insights into the Electroreduction of Ethylene Sulfite as an Electrolyte Additive for Facilitating Solid Electrolyte Interphase Formation in Lithium Ion Batteries. Physical Chemistry Chemical Physics 2017, 19, 6861-6870. 140. Ren, F.; Zuo, W.; Yang, X.; Lin, M.; Xu, L.; Zhao, W.; Zheng, S.; Yang, Y., The Comprehensive Understanding of Reduction Mechanisms of Ethylene Sulfite in Ec-Based Lithium-Ion Batteries. The Journal of Physical Chemistry C 2019. 141. Leggesse, E. G.; Jiang, J.-C., Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries. The Journal of Physical Chemistry A 2012, 116, 11025-11033. 142. Stewart, J. J., Optimization of Parameters for Semiempirical Methods V: Modification of Nddo Approximations and Application to 70 Elements. Journal of Molecular modeling 2007, 13, 1173-1213. 143. G. Rauhut, A. A., J.; Chandrasekhar, T. S., W. Sauer, B.; Beck, M. H., P. Gedeck and T. Clark,; VAMP 6.5, O. M. L., The; Medawar Centre, O. S. P.; Oxford OX4 4GA, E., 1997. 144. Varma-O'Brien, S.; Brown, F. K.; LeBeau, A.; Brown, R. D., Changing Paradigms in Drug Discovery: Scientific Business Intelligence™ and Workflow Solutions. Current Computer-Aided Drug Design 2008, 4, 13-22. 145. Hwang, C.-L.; Masud, A. S. M., Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey; Springer Science & Business Media, 2012; Vol. 164. 146. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A 1998, 102, 1995-2001. 147. Pearson, R. G., Absolute Electronegativity and Hardness: Applications to Organic Chemistry. The Journal of Organic Chemistry 1989, 54, 1423-1430. 148. Halls, M. D.; Tasaki, K., High-Throughput Quantum Chemistry and Virtual Screening for Lithium Ion Battery Electrolyte Additives. Journal of Power Sources 2010, 195, 1472-1478. 149. Breiman, L., Random Forests. Machine learning 2001, 45, 5-32. 150. Perner, P.; Zscherpel, U.; Jacobsen, C., A Comparison between Neural Networks and Decision Trees Based on Data from Industrial Radiographic Testing. Pattern Recognition Letters 2001, 22, 47-54. 151. Geurts, P.; Ernst, D.; Wehenkel, L., Extremely Randomized Trees. Machine learning 2006, 63, 3-42. 152. Brownlee, J., A Gentle Introduction to Xgboost for Applied Machine Learning. Machine Learning Mastery. Available online: http://machinelearningmastery. com/gentle-introduction-xgboost-appliedmachine-learning/(accessed on 2 March 2018) 2016. 153. Finney, D., Was This in Your Statistics Textbook? Vi. Regression and Covariance. Experimental Agriculture 1989, 25, 291-311. 154. Draper, N. R., The Box‐Wetz Criterion Versus R2. Journal of the Royal Statistical Society: Series A (General) 1984, 147, 100-103.
|