(18.204.2.190) 您好!臺灣時間:2021/04/22 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:丁慧然
研究生(外文):Ting, Racquel Ranchie Aquino
論文名稱:A Two-step Non-catalyzed Esterification Synthesis of 1,3(-2) -dioleoyl-2(-1)-palmitylglyceride
論文名稱(外文):A Two-step Non-catalyzed Esterification Synthesis of 1,3(-2) -dioleoyl-2(-1)-palmitylglyceride
指導教授:朱義旭
指導教授(外文):Yi-Hsu Ju
口試委員:Suryadi IsmadjiTran Nguyen Phuong Lan朱義旭Alchris Woo GoShella Santoso
口試委員(外文):Suryadi IsmadjiTran Nguyen Phuong LanYi-Hsu JuAlchris Woo GoShella Santoso
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:Non-catalyzedEsterificationOPO/OOP
外文關鍵詞:Non-catalyzedEsterificationOPO/OOP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生產二酸甘油酯(DG)在食品、藥劑及化妝品工業中扮演重要角色。尤其是DG可以做為生產母乳脂肪替代物之起始基質。本研究找出 以無觸媒、兩步驟法生產1,3(-2) - 二醇基-2(-1)- 棕櫚基甘油酯之最適化條件。探討在氮氣環境下,反應時間8小時,溫度(150°C, 175°C, 200°C)、油酸對甘油莫爾比(1:1, 2:1, 3:1, 4:1)及起始水含量對DG選擇性(g DG/g MG+TG)以及油酸轉化率之影響。結果發現初始水含量對反應速率及產物選擇性無顯著影響;以分子篩去除初始含水後對結果亦無顯著影響。在最佳條件下(200°C、莫爾比1:1、反應 8 小時),可得到DG 含量及選擇率分別為56.61±3.06% 及1.30 (g DG/g MG+TG)。此粗產物再與棕梠酸在不同溫度(175°C, 200°C, 225°C)及棕梠酸對DG莫爾比 (1:1, 1.5:1, 2:1, 2.5:1)下行酯化反應。在溫度 225°C 、莫爾比 2:1,反應2小時可得平衡OOP/OPO 選擇率41.89±0.21% (g OOP(OPO)/ g TG)。 與催化反應比較,本研究陰部使用觸媒,不會產生皂化反應,是以下游處理較簡單。雖然本研究使用較高反應溫度,但所需要反應時間較短。
Production of diglycerides (DGs) plays an important role in the food, pharmaceutical, and cosmetic industries. Particularly, they can be used as starting materials for the production of human milk fat substitutes(HMFS). In this study, optimal conditions for the non-catalyzed production of 1,3(-2)-dioloeyl-2(-1)-palmityl glyceride were determined. A two-step non-catalyzed esterification was done. The temperature (150°C, 175°C, 200°C), oleic acid to glycerol molar ratio (1:1, 2:1, 3:1, 4:1), and initial water content were varied to determine DG selectivity (g DG/g MG+TG) and % conversion (with respect to oleic acid) over an 8 h period in a nitrogen-purged system. It was also noted the tested initial water contents showed insignificant effect on reaction rates and product selectivity. Addition of molecular sieves for removal of water also demonstrated negligible effects in this temperature range. Diglycerides production was optimized at 200°C and 1:1 molar ratio at 8 hours resulting in a DG content of 56.61±3.06% and a selectivity of 1.30 (g DG/g MG+TG), respectively. The crude product was then esterified with palmitic acid at varying temperatures (175°C, 200°C, 225°C) and palmitic acid to DG in crude product molar ratios (1:1, 1.5:1, 2:1, 2.5:1). Equilibrium OOP/OPO selectivity (g OOP(OPO)/ g TG) of 41.89±0.21% was obtained at a molar ratio of 2:1 and a temperature of 225°C for 2h. Compared to catalyzed reactions, this system would require less downstream procedures as no catalysts need to be removed and no saponification would occur. Although this procedure involves higher reaction temperature compared to enzyme-catalyzed reactions, the time required to obtain high conversion is much shorter.
CHAPTER 1 1
INTRODUCTION 1
1.1. Background of the study 1
1.2. Goal and Objectives 4
1.2.1. Research Goal 4
1.2.2. Objectives 4
1.3. Significance of the Study 4
1.4. Scopes and Limitations 5
CHAPTER 2 6
REVIEW OF RELATED LITERATURE 6
2.1. Synthesis of SLs 6
2.1.1. Acidolysis 6
2.1.2. Interesterification 8
2.1.3. Esterification 10
2.2.2 Enzymatic Esterification 15
2.2.3 Non-catalyzed Esterification 17
2.3. OPO/OOP Production Through Multi-step reactions 18
CHAPTER 3 20
MATERIALS AND METHODS 20
3.1. Materials and Chemicals 20
3.2. Synthesis of diolein 20
3.3. OPO/OOP Synthesis 22
3.4. Gas Chromatography 23
CHAPTER 4 24
RESULTS AND DISCUSSION 24
4.1. Esterification with an acid and base catalyst 24
4.2. Effect of Temperature and molar ratio on conversion and product distribution in synthesis of DGs 25
4.3. Determination of optimum DG synthesis conditions 27
4.4. Effect of initial water 32
4.6. Effect of Temperature on Residual Acid, Product Distribution, and OPO/OOP Selectivity 34
CHAPTER 5 37
CONCLUSION 37
[1] Miller R. Emulsifiers: Types and Uses. 1st ed. Elsevier Ltd.; 2015. doi:10.1016/B978- 0-12-384947-2.00249-X.
[2] Lairon D. Digestion and absorption of lipids. Woodhead Publishing Limited; 2009. doi:10.1533/9781845696603.1.66.
[3] Tonetto GM. What Problems Arise When Enzymatic Synthesis of Structured Di- and Triglycerides Is Performed? 2017. doi:10.1007/978-3-319-51574-8_3.
[4] Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, et al. Lipid composition analysis of milk fats from different mammalian species: Potential for use as human milk fat substitutes. J Agric Food Chem 2013;61:7070–80. doi:10.1021/jf401452y.
[5] Wei W, Jin Q, Wang X. Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res 2019;74:69–86. doi:10.1016/j.plipres.2019.02.001.
[6] ZHAO Y, HUO G. Advance on Production of Human Milk Fat Substitutes (HMFS). J Northeast Agric Univ (English Ed 2012;18:92–6. doi:10.1016/s1006-8104(12)60016- 6.
[7] Zou L, Pande G, Akoh CC. Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs. Annu Rev Food Sci Technol 2016;7:139–65. doi:10.1146/annurev-food-041715-033120.
[8] Ferreira-Dias S, Tecelão C. Human milk fat substitutes: Advances and constraints of enzyme-catalyzed production. Lipid Technol 2014;26:183–6. doi:10.1002/lite.201400043.
[9] Gibon V, Kellens M. Latest Developments in Chemical and Enzymatic Interesterification for Commodity Oils and Specialty Fats. Second Edi. AOCS Press; 2014. doi:10.1016/B978-0-9830791-5-6.50013-7.
[10] Mensink RP, Sanders TA, Baer DJ, Hayes K, Howles PN, Marangoni A. The Increasing Use of Interesterified Lipids in the Food Supply and Their Effects on Health Parameters. Adv Nutr An Int Rev J 2016;7:719–29. doi:10.3945/an.115.009662.
[11] Moquin PHL, Temelli F. Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: A kinetic approach. J Supercrit Fluids 2008;44:40–7. doi:10.1016/j.supflu.2007.08.011.
[12] Rarokar NR, Menghani S, Kerzare D, Khedekar PB. Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals. J Exp Food Chem 2017;03:1– 6. doi:10.4172/2472-0542.1000128.
[13] Wang W, Li T, Ning Z, Wang Y, Yang B, Yang X. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb Technol 2011;49:192–6. doi:10.1016/j.enzmictec.2011.05.001.
[14] Wang X, Han Z, Zou W, Yang W, Jin Q, Wang X. Preparation of 1,3-diolein by irreversible acylation. JAOCS, J Am Oil Chem Soc 2015;92:185–91. doi:10.1007/s11746-014-2579-y.
[15] Wang X, Zou W, Sun X, Zhang Y, Wei L, Jin Q, et al. Chemoenzymatic synthesis of 1,3-dioleoyl-2-palmitoylglycerol. Biotechnol Lett 2015;37:691–6. doi:10.1007/s10529-014-1714-z.
[16] Abro S, Pouilloux Y, Barrault J. Selective synthesis of monoglycerides from glycerol and oleic acid in the presence of solid catalysts 2007:539–46. doi:10.1016/s0167- 2991(97)80948-2.
[17] Guner FS, Sirkecioglu A, Yilmaz S, Erciyes AT, Erdem-Senatalar A. Esterification of oleic acid with glycerol in the presence of sulfated iron oxide catalyst. JAOCS, J Am Oil Chem Soc 1996;73:347–51. doi:10.1007/BF02523429.
[18] Hartman L. Esterification rates of some saturated and unsaturated fatty acids with glycerol. J Am Oil Chem Soc 1966;43:536–8. doi:10.1007/BF02679867.
[19] Sciences M. Structured lipids: methods of production, commercial products and nutraceutical characteristics 2016.
[20] Rios RV, Pessanha MDF, Almeida PF de, Viana CL, Lannes SC da S. Application of fats in some food products. Food Sci Technol 2014;34:3–15. doi:10.1590/s0101- 20612014000100001.
[21] Esteban L, Jiménez MJ, Hita E, González PA, Martín L, Robles A. Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem Eng J 2011;54:62–9. doi:10.1016/j.bej.2011.01.009.
[22] Tang W, Wang X, Huang J, Jin Q, Wang X. A novel method for the synthesis of symmetrical triacylglycerols by enzymatic transesterification. Bioresour Technol 2015;196:559–65. doi:10.1016/j.biortech.2015.08.024.
[23] Wang X, Chen Y, Zheng L, Jin Q, Wang X. Synthesis of 1,3-distearoyl-2- oleoylglycerol by enzymatic acidolysis in a solvent-free system. Food Chem 2017;228:420–6. doi:10.1016/j.foodchem.2017.01.146.
[24] Dijkstra AJ. Interesterification, chemical or enzymatic catalysis. Lipid Technol 2015;27:134–6. doi:10.1002/lite.201500029.
[25] Dollah S, Abdulkarim SM, Ahmad SH, Khoramnia A, Ghazali HM. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. Grasas y Aceites 2015;66:e073. doi:10.3989/gya.0695141.
[26] Meng Z, Geng WX, Li JW, Yang ZQ, Jiang J, Wang XG, et al. Enzymatically catalyzed synthesis of anti-blooming agent 1,3-dibehenoyl-2-oleoyl glycerol in a solvent-free system: Optimization by response surface methodology. J Agric Food Chem 2013;61:10798–806. doi:10.1021/jf4031844.
[27] Lee NK, Oh SW, Kwon DY, Yoon SH. Production of 1, 3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Sci Biotechnol 2015;24:433–7. doi:10.1007/s10068-015-0057-4.
[28] Lopes TIB, Ribeiro MDMM, Ming CC, Grimaldi R, Gonçalves LAG, Marsaioli AJ. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance. Food Chem 2016;212:641–7. doi:10.1016/j.foodchem.2016.06.024.
[29] Soumanou MM, Bornscheuer UT, Schmid RD. Two-step enzymatic reaction for the synthesis of pure structured triacylglycerides. JAOCS, J Am Oil Chem Soc 1998;75:703–10. doi:10.1007/s11746-998-0209-2.
[30] Haraldsson GG, Halldorsson A, Kuls E. Chemoenzymatic synthesis of structured triacylglycerols containing eicosapentaenoic and docosahexaenoic acids. JAOCS, J Am Oil Chem Soc 2000;77:1139–45. doi:10.1007/s11746-000-0179-1.
[31] Wee LH, Lescouet T, Fritsch J, Bonino F, Rose M, Sui Z, et al. Synthesis of monoglycerides by esterification of oleic acid with glycerol in heterogeneous catalytic process using tin-organic framework catalyst. Catal Letters 2013;143:356–63. doi:10.1007/s10562-013-0970-1.
[32] Sánchez N, Martínez M, Aracil J. Selective Esterification of Glycerine to 1-Glycerol Monooleate. 1. Kinetic Modeling. Ind Eng Chem Res 1997;36:1524–8. doi:10.1021/ie9603124.
[33] Islam A, Taufiq-Yap YH, Chan ES, Moniruzzaman M, Islam S, Nabi MN. Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Convers Manag 2014;88:1200–18. doi:10.1016/j.enconman.2014.04.037.
[34] Vicente G, Martínez M, Aracil J. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour Technol 2004;92:297–305. doi:10.1016/j.biortech.2003.08.014.
[35] Zhang Z, Huang H, Ma X, Li G, Wang Y, Sun G, et al. Production of diacylglycerols by esterification of oleic acid with glycerol catalyzed by diatomite loaded SO42−/TiO2. J Ind Eng Chem 2017;53:307–16. doi:10.1016/j.jiec.2017.05.001.
[36] Kong PS, Pérès Y, Wan Daud WMA, Cognet P, Aroua MK. Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity. Front Chem 2019;7:1– 11. doi:10.3389/fchem.2019.00205.
[37] Singh D, Patidar P, Ganesh A, Mahajani S. Esterification of oleic acid with glycerol in the presence of supported zinc oxide as catalyst. Ind Eng Chem Res 2013;52:14776– 86. doi:10.1021/ie401636v.
[38] Machado MDS, Pérez-Pariente J, Sastre E, Cardoso D, De Guereñu AM. Selective synthesis of glycerol monolaurate with zeolitic molecular sieves. Appl Catal A Gen 2000;203:321–8. doi:10.1016/S0926-860X(00)00493-2.
[39] Pouilloux Y. Synthesis of glycerol monooctadecanoate from octadecanoic acid and glycerol . Influence of. Chemistry (Easton) 2000;3:589–94.
[40] Melo-Júnior CAR, Albuquerque CER, Fortuny M, Dariva C, Egues S, Santos AF, et al. Use of microwave irradiation in the noncatalytic esterification of C18 fatty acids. Energy and Fuels 2009;23:580–5. doi:10.1021/ef800766x.
[41] Salihu A, Alam MZ. Solvent tolerant lipases: A review. Process Biochem 2015;50:86– 96. doi:10.1016/j.procbio.2014.10.019.
[42] Zhong N, Gui Z, Xu L, Huang J, Hu K, Gao Y, et al. Solvent-free enzymatic synthesis of 1, 3-Diacylglycerols by direct esterification of glycerol with saturated fatty acids. Lipids Health Dis 2013;12:1–7. doi:10.1186/1476-511X-12-65.
[43] Duan ZQ, Du W, Liu DH. The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterication. Bioresour Technol 2010;101:2568–71. doi:10.1016/j.biortech.2009.11.087.
[44] Laszlo JA, Compton DL, Vermillion KE. Acyl migration kinetics of vegetable oil 1,2- diacylglycerols. JAOCS, J Am Oil Chem Soc 2008;85:307–12. doi:10.1007/s11746- 008-1202-5.
[45] Mostafa NA, Maher A, Abdelmoez W. Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv Biosci Biotechnol 2013;04:900–7. doi:10.4236/abb.2013.49118.
[46] Chen ML, Vali SR, Lin JY, Ju YH. Synthesis of the structured lipid 1,3-dioleoyl-2- palmitoylglycerol from palm oil. JAOCS, J Am Oil Chem Soc 2004;81:525–32. doi:10.1007/s11746-006-0935-2.
[47] Mattson FH, Volpenhein RA. Synthesis and properties of glycerides. J Lipid Res 1962;3:281–96.
[48] Montes D’Oca MG, Soares RM, De Moura RR, De Freitas Granjão V. Sulfamic acid: An efficient acid catalyst for esterification of FFA. Fuel 2012;97:884–6. doi:10.1016/j.fuel.2012.02.038.
[49] Go AW, Tran Nguyen PL, Huynh LH, Liu YT, Sutanto S, Ju YH. Catalyst free esterification of fatty acids with methanol under subcritical condition. Energy 2014;70:393–400. doi:10.1016/j.energy.2014.04.013.
[50] Hansen CF, Hernandez A, Mullan BP, Moore K, Trezona-Murray M, King RH, et al. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim Prod Sci 2009;49:154. doi:10.1071/ea08210.
[51] Kotwal M, Deshpande SS, Srinivas D. Esterification of fatty acids with glycerol over Fe-Zn double-metal cyanide catalyst. Catal Commun 2011;12:1302–6. doi:10.1016/j.catcom.2011.05.008.
[52] Duan ZQ, Du W, Liu DH. Improved synthesis of 1,3-diolein by Novozym 435- mediated esterification of monoolein with oleic acid. J Mol Catal B Enzym 2013;89:1–5. doi:10.1016/j.molcatb.2012.12.003.
[53] Zou X, Jin Q, Guo Z, Huang J, Xu X, Wang X. Preparation of 1, 3-dioleoyl-2- palmitoylglycerol-rich structured lipids from basa catfish oil: Combination of fractionation and enzymatic acidolysis. Eur J Lipid Sci Technol 2016;118:708–15. doi:10.1002/ejlt.201500226.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔