|
[1] World Population Prospects The 2017 Revision, Key Findings and Advance Tables, United Nations, Department of Economic and Social Affairs, Population Division, 2017. [2] S. Henríquez, and M. J. G. de Tejada Romero, “Osteoporosis,” Medicine - Programa de Formación Médica Continuada Acreditado, vol. 12, no. 60, pp. 3499-3505, 2018. [3] W. Habraken, P. Habibovic, M. Epple, and M. Bohner, “Calcium phosphates in biomedical applications: materials for the future?,” Materials Today, vol. 19, no. 2, pp. 69-87, 2016. [4] G. Dong, L. He, D. Pang, L. Wei, and C. Deng, “An in situ study of the deposition of a calcium phosphate mineralized layer on a silicon-substituted hydroxyapatite sensor modulated by bovine serum albumin using QCM-D technology,” Ceramics International, vol. 42, no. 16, pp. 18648-18656, 2016. [5] R. T. Chen, B. W. Muir, L. Thomsen, A. Tadich, B. C. Cowie, G. K. Such, A. Postma, K. M. McLean, and F. Caruso, “New insights into the substrate-plasma polymer interface,” J Phys Chem B, vol. 115, no. 20, pp. 6495-502, May 26, 2011. [6] A. Michelmore, P. Martinek, V. Sah, R. D. Short, and K. Vasilev, “Surface Morphology in the Early Stages of Plasma Polymer Film Growth from Amine-Containing Monomers,” Plasma Processes and Polymers, vol. 8, no. 5, pp. 367-372, 2011. [7] I. Langmuir, “Oscillations in Ionized Gases,” Proceedings of the National Academy of Sciences, vol. 14, no. 8, pp. 627-637, 1928. [8] J. J. Thomson, “XL. Cathode Rays,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 44, no. 269, pp. 293-316, 1897. [9] R. Langer, L. G. Cima, J. A. Tamad, and h. W. Earic, “Future directions in biomaterials,” Biomaterials, vol. 11, 1990. [10] K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, pp. 2347-2359, 2000. [11] J. L. Bengt Kasemo, “Biomaterial and implant surfaces: On the role of cleanliness, contamination, and preparation procedures,” J. Biomed. Mater. Res.: Applied Biomaterials, vol. 22, pp. 145-158, 1988. [12] R. Deepashree, V. Devaki, B. Kandhasamy, and R. Ajay, “Evolution of implant biomaterials: A literature review,” Journal of Indian Academy of Dental Specialist Researchers, vol. 4, no. 2, pp. 65, 2017. [13] W. Wang, and K. W. K. Yeung, “Bone grafts and biomaterials substitutes for bone defect repair: A review,” Bioact Mater, vol. 2, no. 4, pp. 224-247, Dec, 2017. [14] A. Kolk, J. Handschel, W. Drescher, D. Rothamel, F. Kloss, M. Blessmann, M. Heiland, K. D. Wolff, and R. Smeets, “Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials,” J Craniomaxillofac Surg, vol. 40, no. 8, pp. 706-18, Dec, 2012. [15] H. Shi, X. Ye, F. He, and J. Ye, “Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: An in vitro study,” Colloids Surf B Biointerfaces, vol. 177, pp. 462-469, May 1, 2019. [16] A. Abdal-hay, P. Vanegas, A. S. Hamdy, F. B. Engel, and J. H. Lim, “Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofibers for bone tissue engineering,” Chemical Engineering Journal, vol. 254, pp. 612-622, 2014. [17] S. Rößler, A. Sewing, M. S. lzel, R. Born, D. Scharnweber, M. Dard, and H. Worch, “Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature,” J Biomed Mater Res A, vol. 64, no. 4, pp. 655-663, 2003. [18] V. Q. Le, G. Pourroy, A. Cochis, L. Rimondini, W. I. Abdel-Fattah, H. I. Mohammed, and A. Carrado, “Alternative technique for calcium phosphate coating on titanium alloy implants,” Biomatter, vol. 4, pp. e28534, 2014. [19] A. Alcheikh, G. Pavon-Djavid, G. Helary, H. Petite, V. Migonney, and F. Anagnostou, “PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion,” J Mater Sci Mater Med, vol. 24, no. 7, pp. 1745-54, Jul, 2013. [20] E. Gerits, S. Kucharikova, P. Van Dijck, M. Erdtmann, A. Krona, M. Lovenklev, M. Frohlich, B. Dovgan, F. Impellizzeri, A. Braem, J. Vleugels, S. C. Robijns, H. P. Steenackers, J. Vanderleyden, K. De Brucker, K. Thevissen, B. P. Cammue, M. Fauvart, N. Verstraeten, and J. Michiels, “Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces,” J Orthop Res, vol. 34, no. 12, pp. 2191-2198, Dec, 2016. [21] S. P. Krumdieck, R. Boichot, R. Gorthy, J. G. Land, S. Lay, A. J. Gardecka, M. I. J. Polson, A. Wasa, J. E. Aitken, J. A. Heinemann, G. Renou, G. Berthome, F. Charlot, T. Encinas, M. Braccini, and C. M. Bishop, “Nanostructured TiO2 anatase-rutile-carbon solid coating with visible light antimicrobial activity,” Sci Rep, vol. 9, no. 1, pp. 1883, Feb 13, 2019. [22] M. Kumaresan, K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. Ganesh Kumar, “Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria,” Microb Pathog, vol. 124, pp. 311-315, Nov, 2018. [23] P. Li, Y. F. Poon, W. Li, H.-Y. Zhu, S. H. Yeap, Y. Cao, X. Qi, C. Zhou, M. Lamrani, R. W. Beuerman, E.-T. Kang, Y. Mu, C. M. Li, M. W. Chang, S. S. J. Leong, and M. B. Chan-Park, “A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability,” Nature Materials, vol. 10, pp. 149, 12/12/online, 2010. [24] R. R. Maddikeri, S. Tosatti, M. Schuler, S. Chessari, M. Textor, R. G. Richards, and L. G. Harris, “Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces,” J Biomed Mater Res A, vol. 84, no. 2, pp. 425-35, Feb, 2008. [25] P. H. Chua, K. G. Neoh, Z. Shi, and E. T. Kang, “Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates,” J Biomed Mater Res A, vol. 87, no. 4, pp. 1061-74, Dec 15, 2008. [26] L. N. Wang, and J. L. Luo, “Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method,” Materials Science and Engineering: C, vol. 31, no. 4, pp. 748-754, 2011. [27] P. Li, C. Xie, J. Liu, Z. Wang, and X. Xiao, “Titanium dioxide nanotubes/calcium silicate composite coatings prepared by alternative loop immersion method,” Surface and Coatings Technology, vol. 258, pp. 624-630, 2014. [28] Y. X. Gu, J. Du, J. M. Zhao, M. S. Si, J. J. Mo, and H. C. Lai, “Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method,” J Biomed Mater Res B Appl Biomater, vol. 100, no. 8, pp. 2122-30, Nov, 2012. [29] N. Chen, H. Kim do, P. Kovacik, H. Sojoudi, M. Wang, and K. K. Gleason, “Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress,” Annu Rev Chem Biomol Eng, vol. 7, pp. 373-93, Jun 7, 2016. [30] C. L. C. Rodriguez, F. Kessler, N. Dubey, V. Rosa, and G. J. M. Fechine, “CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation,” Surface and Coatings Technology, vol. 311, pp. 10-18, 2017. [31] P. Gibbon, “Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration,” vol. 1, pp. 51, 2016. [32] R. Dendy, Plasma physics: an introductory course: books.google.com, 1995. [33] J. A. Bittencourt, Fundamentals of Plasma Physics Library of Congress Cataloging, 2004. [34] G. B. C. Borcia, N. Dumitrascu “Surface Treament of Polymers by Plasma and UV Radiation,” Rom. Journ. Phys., vol. 56, pp. 224-232, 2011. [35] A. Waterhouse, S. G. Wise, Y. Yin, B. Wu, B. James, H. Zreiqat, D. R. McKenzie, S. Bao, A. S. Weiss, M. K. C. Ng, and M. M. M. Bilek, “In vivo biocompatibility of a plasma-activated, coronary stent coating,” Biomaterials, vol. 33, no. 32, pp. 7984-7992, 2012. [36] R. Bitar, P. Cools, N. De Geyter, and R. Morent, “Acrylic acid plasma polymerization for biomedical use,” Applied Surface Science, vol. 448, pp. 168-185, 2018. [37] P. Li, G. Wu, R. Xu, W. Wang, S. Wu, K. W. K. Yeung, and P. K. Chu, “In vitro corrosion inhibition on biomedical shape memory alloy by plasma-polymerized allylamine film,” Materials Letters, vol. 89, pp. 51-54, 2012. [38] B. S. Lou, S. B. Wang, S. B. Hung, C. J. Wang, and J. W. Lee, “Characterization of plasma polymerized organosilicon thin films deposited on 316L stainless steel,” Thin Solid Films, vol. 660, pp. 637-645, 2018. [39] J. Esguerra-Arce, A. B. Castañeda, A. Esguerra-Arce, Y. Aguilar, and S. Mischler, “Fretting corrosion between bone and calcium phosphate-calcium titanate coatings,” Wear, vol. 414-415, pp. 366-375, 2018. [40] M. J. Garcia-Ramirez, R. Lopez-Sesenes, I. Rosales-Cadena, and J. G. Gonzalez-Rodriguez, “Corrosion behaviour of Ti–Ni–Al alloys in a simulated human body solution,” Journal of Materials Research and Technology, vol. 7, no. 3, pp. 223-230, 2018. [41] W. F. Ng, M. H. Wong, and F. T. Cheng, “Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1823-1830, 2010. [42] S. Burany, “Scanning Electron Microscopy and X-Ray Microanalysis,” Microscopy and Microanalysis, vol. 9, no. 5, pp. 484-484, 2003. [43] G. Sauerbrey, “Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 155, no. 2, pp. 206-222, 1959. [44] T. S. Chow, “Wetting of rough surfaces,” Journal of Physics: Condensed Matter, vol. 10, no. 27, pp. L445-L451, 1998. [45] J. A. d. H. Peter R. Griffiths, Fourier Transform Infrared Spectrometry, Second ed.: Copyright © 2007 John Wiley & Sons, Inc., 2006. [46] K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, “Conducting atomic force microscopy for nanoscale tunnel barrier characterization,” Review of Scientific Instruments, vol. 75, no. 8, pp. 2726-2731, 2004. [47] K. Siegbahn, and K. Edvarson, “β-Ray spectroscopy in the precision range of 1 : 105,” Nuclear Physic vol. 1, no. 8, pp. 137-159, 1956. [48] A. Einstein, Relativity, p.^pp. 176: Routledge, 2001. [49] E. Rutherford, Radioactive substances and their radiations: Cambridge, Univ. Press, 1913. [50] H. P. Myers, Introductory Solid State Physics, second ed., Taylor & Francis e-Library, 2009. [51] B. P. Swain, “The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1589-1593, 2006. [52] Woo-Seok Choa, Yoon-Suk Oh, Chang-Sam Kima, Minoru Osada, Masato Kakihana, Dae-Soon Lim, and Deock-Soo Cheong, “Characterization of Si3N4/SiC nanocomposite by Raman scattering and XPS,” Journal of Alloys and Compounds, vol. 285, pp. 255-259, 1999. [53] J. Carpentier, and G. Grundmeier, “Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films,” Surface and Coatings Technology, vol. 192, no. 2-3, pp. 189-198, 2005. [54] S.-D. Wang, and Y.-S. Jiang, “The durability of superhydrophobic films,” Applied Surface Science, vol. 357, pp. 1647-1657, 2015. [55] H. S. Medeiros, R. S. Pessoa, J. C. Sagás, M. A. Fraga, L. V. Santos, H. S. Maciel, M. Massi, A. S. d. S. Sobrinho, and M. E. H. M. da Costa, “Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique,” Surface and Coatings Technology, vol. 206, no. 7, pp. 1787-1795, 2011. [56] M. M. Rahman, and S. K. Hasan, “Ellipsometric, XPS and FTIR study on SiCN films deposited by hot-wire chemical vapor deposition method,” Materials Science in Semiconductor Processing, vol. 42, pp. 373-377, 2016. [57] X. W. Du, Y. Fu, J. Sun, P. Yao, and L. Cui, “Intensive light emission from SiCN films by reactive RF magnetron sputtering,” Materials Chemistry and Physics, vol. 103, no. 2-3, pp. 456-460, 2007. [58] Guido Grundmeier, and M. Stratmann, “Interfacial processes during plasma polymer deposition on oxide covered iron,” Thin Solid Films, vol. 352, pp. 119-127, 1999. [59] F. Te´ne´gal, A. Gheorghiu de la Rocque, G. Dufour, C. Se´ne´maud, B. Doucey, D. Bahloul-Hourlier, P. Goursat, M. Mayne, and M. Cauchetier, “Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect,” Journal of Electron Spectroscopy and Related Phenomena, vol. 109, pp. 241-248, 2000. [60] G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, “Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant,” American Journal of Biomedical Engineering, vol. 2, no. 6, pp. 218-240, 2013. [61] A.-E. P. Baeza-Marrufo R., Carrera-Figueiras C., Muñoz-Rodríguez D., Ávila-Ortega A., “Surface modification of poly(tetrafluorethylene) magnetic stirring bars with plasma of hexamethyldisiloxane and its applications in the stir bar sorptive extraction technique,” Superficies y Vacío, vol. 25, no. 1, pp. 49-55, 2012. [62] J. L. M.T. Kim, “Characterization of amorphous SiC:H films deposited from hexamethyldisilazane,” Thin Solid Films, vol. 303, pp. 173-179, 1997. [63] E. Vyhmeister, L. Reyes-Bozo, H. Valdés-González, J.-L. Salazar, A. Muscat, L. A. Estévez, and D. Suleiman, “In situ FTIR experimental results in the silylation of low-k films with hexamethyldisilazane dissolved in supercritical carbon dioxide,” The Journal of Supercritical Fluids, vol. 90, pp. 134-143, 2014. [64] J. Bour, J. Bardon, H. Aubriet, D. Del Frari, B. Verheyde, R. Dams, D. Vangeneugden, and D. Ruch, “Different Ways to Plasma-Polymerize HMDSO in DBD Configuration at Atmospheric Pressure for Corrosion Protection,” Plasma Processes and Polymers, vol. 5, no. 8, pp. 788-796, 2008. [65] J. He, X. Li, D. Su, H. Ji, X. Zhang, and W. Zhang, “Super-hydrophobic hexamethyl-disilazane modified ZrO2–SiO2 aerogels with excellent thermal stability,” Journal of Materials Chemistry A, vol. 4, no. 15, pp. 5632-5638, 2016. [66] A. Roguska, M. Pisarek, M. Andrzejczuk, M. Dolata, M. Lewandowska, and M. Janik-Czachor, “Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications,” Materials Science and Engineering: C, vol. 31, no. 5, pp. 906-914, 2011. [67] M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater, vol. 9, no. 8, pp. 7591-621, Aug, 2013. [68] A. K. Nayak, “Hydroxyapatite Synthesis Methodologies: An Overview,” ChemTech, vol. 2, pp. 903-907, 2010. [69] D. K. Pattanayak, R. Dash, R. C. Prasad, B. T. Rao, and T. R. Rama Mohan, “Synthesis and sintered properties evaluation of calcium phosphate ceramics,” Materials Science and Engineering: C, vol. 27, no. 4, pp. 684-690, 2007. [70] M. L. H. Rozali, Z. Ahmad, and M. I. N. Isa, “Interaction between Carboxy Methylcellulose and Salicylic Acid Solid Biopolymer Electrolytes,” Advanced Materials Research, vol. 1107, pp. 223-229, 2015. [71] A. Zavattini, V. P. Feitosa, F. Mannocci, F. Foschi, A. Babbar, A. Luzi, L. Ottria, F. Mangani, I. Casula, and S. Sauro, “Bonding ability of experimental resin-based materials containing (ion-releasing)-microfillers applied on water-wet or ethanol-wet root canal dentine,” International Journal of Adhesion and Adhesives, vol. 54, pp. 214-223, 2014. [72] A. Polini, D. Pisignano, M. Parodi, R. Quarto, and S. Scaglione, “Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors,” PLoS One, vol. 6, no. 10, pp. e26211, 2011. [73] C. Drouet, “Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds,” Biomed Res Int, vol. 2013, pp. 490946, 2013. [74] B. C. Liga, and B. Natalija, Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy: InTech, 2012. [75] I. D. Stein, and G. Granik, “Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content ” Calcified Tissue International, vol. 32, no. 1, pp. 189-194, 1980. [76] J. D. Currey, “The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone,” J Biomech, vol. 21, no. 2, pp. 131-139, 1988. [77] G. A. Renders, L. Mulder, L. J. van Ruijven, and T. M. van Eijden, “Porosity of human mandibular condylar bone,” J Anat, vol. 210, no. 3, pp. 239-48, Mar, 2007. [78] B. D. Boyan, V. L. Sylvia, Y. Liu, R. Sagun, D. L. Cochran, C. H., Lohmann, D. D. Dean, and Z. Schwartz, “Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2,” Biomaterials, vol. 20, no. 23-24, pp. 2305-2310, 1999.
|