跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/09 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Mimi Mereditha Tjiotijono
研究生(外文):Mimi Mereditha Tjiotijono
論文名稱:On Modeling Massive Machine Type Communications Traffic with Spatial Point Event
論文名稱(外文):On Modeling Massive Machine Type Communications Traffic with Spatial Point Event
指導教授:鄭欣明鄭欣明引用關係
指導教授(外文):Shin-Ming Cheng
口試委員:張世豪沈上翔黃琴雅鄭欣明
口試委員(外文):Shih-Hao ChangShan-Hsiang ShenChin-Ya HuangShin-Ming Cheng
口試日期:2018-12-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:42
中文關鍵詞:mMTCTraffic ModelingSpatial Point Event5GPPP
外文關鍵詞:mMTCTraffic ModelingSpatial Point Event5GPPP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Machine-type communication (MTC) has the essential role for supporting
in connecting the huge number of devices in the 5G systems, which is predicted
to be officially released in 2020. Massive MTC (mMTC) is the key
to solve a large number of devices as its low-cost energy consumption and
wide area coverage. Enabling the massive number of machine-type devices(
MTDs) to request services to the base stations (BSs) resulted in the
randomness of the random access mechanism. The position of MTDs, BSs,
and the events are modeled in Spatial Poisson Point Process (SPPP), as the
arrival of the events is based on the Poisson Arrival Process. Stochastic geometry
is used to capture the characterization of the mMTC over cellular
and events with enhanced access-barring class and random access through
the PPP. Then, we proposed the event-based traffic model by combining
the spatial point process and the poisson arrival process as the event model
(Spatial Point Event) with the parameters from the Markov chain. Hence,
we calculate the approximation of the expected traffic rate. The validation
of the traffic model is using simulation and compared to the previous traffic
model.
Machine-type communication (MTC) has the essential role for supporting
in connecting the huge number of devices in the 5G systems, which is predicted
to be officially released in 2020. Massive MTC (mMTC) is the key
to solve a large number of devices as its low-cost energy consumption and
wide area coverage. Enabling the massive number of machine-type devices(
MTDs) to request services to the base stations (BSs) resulted in the
randomness of the random access mechanism. The position of MTDs, BSs,
and the events are modeled in Spatial Poisson Point Process (SPPP), as the
arrival of the events is based on the Poisson Arrival Process. Stochastic geometry
is used to capture the characterization of the mMTC over cellular
and events with enhanced access-barring class and random access through
the PPP. Then, we proposed the event-based traffic model by combining
the spatial point process and the poisson arrival process as the event model
(Spatial Point Event) with the parameters from the Markov chain. Hence,
we calculate the approximation of the expected traffic rate. The validation
of the traffic model is using simulation and compared to the previous traffic
model.
Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i
Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Research Interests in Modeling mMTC for 5G . . 4
1.2.2 Interesting Approach from Event Point of View . . 6
1.3 Thesis Contribution and Limitations . . . . . . . . . . . . 7
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 8
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Background of the Event-based Concept . . . . . . . . . . 10
2.2 Relation of Markov Chain to Voronoi Tesselation [1] . . . 12
vi
2.3 Recent Traffic Models . . . . . . . . . . . . . . . . . . . 14
2.3.1 Source Traffic Model (STM) and Aggregated Traffic
Model (ATM) . . . . . . . . . . . . . . . . . . 15
2.3.2 Coupled Markov Modulated Poisson Processes (CMMPP) [2] 17
2.3.3 Spatial Poisson Point Processes (SPPP) [3] . . . . 19
2.3.4 Spatio Temporal Traffic Model (STTM) [4] . . . . 20
3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Symbols in Thesis . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Event Scenario . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Spatial Point Event (SPE) . . . . . . . . . . . . . . . . . . 28
3.5 Traffic Modeling . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . 33
4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Parameters Used for Simulation . . . . . . . . . . . . . . 34
4.2 Expected Total Rates . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Event Density (E) . . . . . . . . . . . . . . . . . 35
4.2.2 Number of Events (N) . . . . . . . . . . . . . . . 36
4.2.3 Comparison to the other traffic model . . . . . . . 38
vii
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
viii
Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i
Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Research Interests in Modeling mMTC for 5G . . 4
1.2.2 Interesting Approach from Event Point of View . . 6
1.3 Thesis Contribution and Limitations . . . . . . . . . . . . 7
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 8
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Background of the Event-based Concept . . . . . . . . . . 10
2.2 Relation of Markov Chain to Voronoi Tesselation [1] . . . 12
vi
2.3 Recent Traffic Models . . . . . . . . . . . . . . . . . . . 14
2.3.1 Source Traffic Model (STM) and Aggregated Traffic
Model (ATM) . . . . . . . . . . . . . . . . . . 15
2.3.2 Coupled Markov Modulated Poisson Processes (CMMPP) [2] 17
2.3.3 Spatial Poisson Point Processes (SPPP) [3] . . . . 19
2.3.4 Spatio Temporal Traffic Model (STTM) [4] . . . . 20
3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Symbols in Thesis . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Event Scenario . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Spatial Point Event (SPE) . . . . . . . . . . . . . . . . . . 28
3.5 Traffic Modeling . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . 33
4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Parameters Used for Simulation . . . . . . . . . . . . . . 34
4.2 Expected Total Rates . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Event Density (E) . . . . . . . . . . . . . . . . . 35
4.2.2 Number of Events (N) . . . . . . . . . . . . . . . 36
4.2.3 Comparison to the other traffic model . . . . . . . 38
vii
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
viii
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top