|
[1] H.J.G.Haynes.,“Fire loss in the united states during2015,”2016. [2] ThouHo Chen, PingHsueh Wu, and YungChuen Chiou, “An early fire detection method based on image processing,”vol.3,pp.1707–1710Vol.3,Oct2004. [3] G.Marbach,M.Loepfe,andT.Brupbacher,“An image processing technique for fire detection in video images,” Fire Safety Journal, vol. 41, no. 4, pp. 285 – 289, 2006. 13th International Conference on Automatic Fire Detection,Duisburg,Germany. [4] B.U.Töreyin,Y.Dedeoğlu,U.Güdükbay,andA.E.Çetin,“Computer vision basedmethod for real time fire and flame detection,”PatternRecognitionLetters,vol.27,no.1,pp.49–58,2006. [5] K.Muhammad,J.Ahmad,Z.Lv,P.Bellavista,P.Yang,andS.W.Baik,“Efficient deep cnnbasedfire detection and localization in video surveillance applications,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,vol.49,pp.1419–1434,July2019. [6] A.J.DunningsandT.P.Breckon,“Experiment ally defined convolutional neural network architecture variants for nontemporal realtime fire detection,”pp.1558–1562,Oct2018. [7] G.Huang,Z.Liu,L.v.d.Maaten,andK.Q.Weinberger,“Densely connected convolutional networks,” pp.2261–2269,July2017. [8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” pp. 770–778, June2016. [9] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” 2015. cite arxiv: 1505.00387Comment: 6 pages, 2 figures. Presented at ICML 2015 Deep Learning workshop. Full paperisatarXiv:1507.06228. [10] D. Chen, W. Zhang, X. Xu, and X. Xing, “Deep networks with stochastic depth for acoustic modelling,”pp.1–4,Dec2016. [11] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach for deep face recognition,”2016. [12] D. Y. T. Chino, L. P. S. Avalhais, J. F. R. Jr., and A. J. M. Traina, “Bowfire: Detection of fire in still images by integrating pixel color and texture analysis,”CoRR,vol.abs/1506.03495,2015.
|