跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅培軒
研究生(外文):Pei-Hsuan Fu
論文名稱:以眼動方法探討國中學生學習數學幾何證明問題之閱讀歷程
論文名稱(外文):Exploring Junior High School Students’ Geometry Proof Reading Process by Eye-Tracking Technology
指導教授:蔡孟蓉蔡孟蓉引用關係
指導教授(外文):Meng-Jung Tsai
口試委員:蔡孟蓉蔡今中邱國力
口試委員(外文):Meng-Jung TsaiChin-Chung TsaiGuo-Li Chiou
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:數位學習與教育研究所
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:幾何證明眼球追蹤學習動機認知負荷
外文關鍵詞:eye-trackinggeometry prooflearning motivationcognitive load
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
學習動機與認知負荷是影響學生學習注意力歷程最常見的因素,由於科技的進步,眼球追蹤技術是一項能夠直接收集分析學習者注意力歷程的研究工具。本研究旨在運用眼球追蹤技術,探討國中學生閱讀數學幾何證明問題時的閱讀歷程。本研究以單一組實驗設計,先對90 名國中八年級學生進行數學學習動機和基本幾何符號辨識測驗,並參考先前數學成績,從中篩選17 名且未學過幾何證明的學生為研究對象,參加一項數學三角形全等性質的學習活動,閱讀九張教學投影片,每張投影片均有主旨區、說明區、圖形區三個欲觀察的興趣區塊。閱讀過程中運用Tobii 4C 遠距可攜式桌上型眼動儀蒐集眼動資料和所感知的認知負荷,閱讀後並進行學習成效測驗。本研究運用研究團隊所開發之眼動資料分析工具(Hsu, Chiou & Tsai, 2016; Tsai, Hsu & Pai, 2018)進行眼動資料處理和注意力分析。研究結果發現:(一)高學習動機學生比低學習動機學生在文字說明區有較多注意力分布,低學習動機學生則比高學習動機學生花較多心力在主旨區。(二)高學習成效學生比低學習成效學生在圖形區有的注意力分布,且注意力在主旨與圖形間有較明顯的轉移;低學習成效學生則在說明區有較大的平均凝視時間,明顯投入較大心智努力,且注意力常在思考後轉移到主旨;(三)高認知負荷感知的學生需要花較多時間閱讀文字敘述(包含主旨與說明),且注意力常在思考與主旨間有轉移;低認知負荷學生則較無特定的注意力轉移模式。本研究揭示不同學習特質國中學生在學習數學幾何證明過程中的個別差異。根據此研究結果,本研究針對未來研究及數學教學實務應用提出相關建議。
Learning motivation and cognitive load are the most common factors impacting students’ visual attention during learning process. With the rapid advance of technology, eye-tracking technique has become a research tool to directly collect and analyze the data about learners’ visual attention during learning. The purpose of this study was to explore the reading process of junior high school students in geometry proof learning by using the eye-tracking technology. Based on a one-group experimental design, this study conducted a pretest including mathematics learning motivation and a basic geometry test for 90 eighth graders. Along with their prior mathematics middle test scores, a total of 17 students who did not learn geometry proof before were selected as the sample of the study. The sample was asked to participate in a learning task about congruent property of triangles. In the task, the students were required to read nine teaching slides which included three areas of interests in each slide: the title area, the explanation area and the graphic area. During the reading process, a Tobii 4C portable-and-remote eye-tracker was used to collect students’ eye movement data and also collect their perceived cognitive loads, followed by a learning achievement test. This study utilized eye-tracking data analysis tools (Hsu, Chiou & Tsai, 2016; Tsai, Hsu & Pai, 2018) to process eye-tracking data and to analyze visual attention. The results indicated that: Fist, the students with the higher learning motivation tended to pay more attention on the explanation area, while students with the lower learning motivation tended to make more mental efforts on the title area. Second, the students with the higher learning achievements tended to pay more attention on the graphic area, and they also had significant visual attention transfers between the title and the graphic areas. However, the students with the lower learning achievements tended to have longer average fixation durations on the explanation areas, and they tended to transfer their visual attention to the title area after thinking. Third, the students who perceived the higher cognitive loads needed to spend more time reading the title and the explanation areas, and they tended to transfer their visual attention between the title areas and thinking. No specific visual attention transfer patterns were found for the students with the lower cognitive load perceptions. This study reveals that there are individual differences in the reading process of geometry proof learning for students with different learning characteristics. According to the above findings, suggestions of future studies and the practices in mathematics teaching have been provided in this study.
摘 要 I
Abstract II
誌 謝 IV
目錄 V
表目錄 VII
圖目錄 X
第一章、緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究問題 3
第四節 名詞解釋 4
第二章、文獻探討 6
第一節 數學幾何證明的學習 6
第二節 眼動技術在教育上的相關研究 9
第三節 數學學習與學習動機 13
第四節 數學學習與認知負荷 15
第三章、研究設計與實施 18
第一節 研究架構 18
第二節 研究對象 19
第三節 研究工具 19
第四節 實驗流程 24
第五節 資料處理與分析 25
第四章、結果與討論 30
第一節 學習動機與注意力分佈情形 30
第二節 學習動機與注意力轉移模式 33
第三節 學習成效與注意力分佈情形 39
第四節 學習成效與注意力轉移模式 43
第五節 學習動機與學習成效注意力轉移模式之交叉分析 49
第六節 認知負荷與注意力分佈情形 51
第七節 認知負荷與注意力轉移模式 56
第五章、研究結論與建議 62
第一節 學習動機與注意力分佈情形、注意力轉移模式之分析 62
第二節 學習成效與注意力分佈情形、注意力轉移模式之分析 63
第三節 學習動機與學習成效在注意力轉移模式之交互作用影響 65
第四節 認知負荷與注意力分佈情形、注意力轉移模式之分析 66
第五節 結論 67
第六節 研究限制與建議 69
參考文獻 72
中文部分 72
英文部分 73
附錄一、實驗同意書 81
附錄二、前測(自我效能量表與基本幾何符號測驗) 82
附錄三、後測(學習成效測驗) 84
附錄四、實驗素材(全等性質投影片) 88
中文部分
左台益、呂鳳琳、曾世綺、吳慧敏、陳明璋、譚寧君(2011)。以分段方式降低任務複雜度對專家與生手閱讀幾何證明的影響。教育心理學報,43(S),291-314。
章佩玉、吳慧敏(2011)。音樂情境對數學解題與認知負荷影響之研究。教學科技與媒體,(95),17-35。
張春興(1998)。教育心理學:三化取向的理論與實踐(2 版)。臺北:臺灣東華。
許瑋芷、陳明溥(2010)。數學表徵及數學自我效能對國小學生樣式推理學習成效之影響。數位學習科技期刊,2(3),42-60。
陳琪瑤、吳昭容(2012)。幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。Journal of Educational Practice and Research,25(2),35-66。
陳學志、賴惠德、邱發忠(2010)。眼球追蹤技術在學習與教育上的應用。教育科學研究期刊,55(4),39-68。
楊芳瑩、蔡孟蓉、劉子鍵(2018)。數位學習的眼球追蹤研究:原理與實例介紹。進階數位學習研究方法,2,33-61。
葉明達、柳賢(2007)。建立判讀理解層級:高中生進行數學論證判讀活動困難之探討。教育與心理研究,30(3),79-109。
葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育第 16 期, 2013。
詹士宜(2012)。以認知負荷取向分析數學學習困難學生在多媒體數學解題歷程之教學。中華民國特殊教育學會年刊,117-156。
賴孟龍、陳彥樺(2012)。以眼動方法探究幼兒閱讀繪本時的注意力偏好。幼兒教保研究,(8),81-96。
謝佳叡、唐書志(2017)。探究九年級生推論形式之邏輯結構的建構與轉化。臺灣數學教育期刊,4(2),1-32。
簡郁芩、吳昭容(2012)。以眼動型態和閱讀測驗表現探討箭頭在科學圖文閱讀中的圖示效果。中華心理學刊,54(3),385-402。
龔心怡(2008)。影響數學學習成就相關因素之探究:數學自我概念與數學自我效能。研究與創新,9,7-8。

英文部分
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215.
Bandura, A. (1986). Social foundations of thought and action: a social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge University Press.
Baker, L., & Wigfield, A. (1999). Dimensions of children's motivation for reading and their relations to reading activity and reading achievement. Reading Research Quarterly, 34(4), 452-477.
Berger, J. L., & Karabenick, S. A. (2011). Motivation and students’ use of learning strategies: Evidence of unidirectional effects in mathematics classrooms. Learning and Instruction, 21(3), 416-428.
Bokosmaty, S., Sweller, J., & Kalyuga, S. (2015). Learning geometry problem solving by studying worked examples: Effects of learner guidance and expertise. American Educational Research Journal, 52(2), 307-333.
Boonen, A. J., de Koning, B. B., Jolles, J., & van der Schoot, M. (2016). Word problem solving in contemporary math education: A plea for reading comprehension skills training. Frontiers in Psychology, 7, 191.
Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why?. Current Directions in Psychological Science, 19(1), 51-57.
Cheng, Y. H., & Lin, F. L. (2007). The effectiveness and limitation of Reading and coloring strategy in learning geometry proof. Proceedings of PME 31, 2, 113-120.
Catrysse, L., Gijbels, D., & Donche, V. (2018). It is not only about the depth of processing: What if eye am not interested in the text?. Learning and Instruction, 58, 284-294.
Deci, E. L. (1972). Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22(1), 113.
Duval, R. (1995). Geometrical Picture: Kinds of Representation and Specific Processing. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education, pp. 142-157. Berlin: Springer.
Duval, R. (1998). Geometry from a cognitive of view. Perspectives on the Teaching of Geometry for the 21st Century. An ICMI Study, pp.37-52
Gottfried, A.E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82, 525-538
Hanna, G., & Jahnke, H. N. (1996). Proof and Proving. In A. Bishop, M. A. K. Clements, C. Keitel-Kreidt, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp.877-908), Dordrecht, The Netherlands: Kluwer Academic Publishers. doi: 10.1007/978-94-009-1465-0_24
Healy, L., & Hoyles, C. (1998). Justifying and Proving in School Mathematics, Executive Summary. London: Institute of Education, University of London.
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 396-428.
Hall, J. M., & Ponton, M. K. (2005). Mathematics self-efficacy of college freshman. Journal of Developmental Education, 28(3), 26.
Hanna, G., De Villiers, M., Arzarello, F., Dreyfus, T., Durand-Guerrier, V., Jahnke, H. N., & Yevdokimov, O. (2009). Proof and proving in mathematics education. Discussion document. In Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education, ed. FL Lin, F. Hsieh, G. Hanna, and M. de Villiers, xixÁxxx. Taipei, Taiwan: National Taiwan Normal University.
Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International Journal of Science and Mathematics Education,12(3), 525-554.
Hsu, C.-Y., Chiou, G.-L., & Tsai, M.-J. (2016, August). A pilot study on developing and validating a fixation-based scaffolding learning system. Poster presented at 2016 International Conference of East-Asian Association for Science Education. Tokyo, Japan.
Inhoff, A. W., & Radach, R. (1998). Definition and computation of oculomotor measures in the study of cognitive processes. In Eye guidance in reading and scene perception (pp. 29-53).
Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8(4), 441-480.
Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329-354.
Jerusalem, M., & Schwarzer, R. (1992). Self-efficacy as a resource factor in stress appraisal processes. Self-efficacy: Thought Control of Action, 195213.
Jex, H. R. (1988). Measuring mental workload: Problems, progress, and promises. In Advances in Psychology (Vol. 52, pp. 5-39). North-Holland.
Jansen, M., Scherer, R., & Schroeders, U. (2015). Students' self-concept and self-efficacy in the sciences: Differential relations to antecedents and educational outcomes. Contemporary Educational Psychology, 41, 13-24.
Jian, Y. C. (2017). Eye-movement patterns and reader characteristics of students with good and poor performance when reading scientific text with diagrams. Reading and Writing, 30(7), 1447-1472.
Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive Sciences, 4(1), 6-14.
Liversedge, S. P., Paterson, K. B., & Pickering, M. J. (1998). Eye movements and measures of reading time. In Eye guidance in reading and scene perception (pp. 55-75).
Lin, F. L., & Cheng, Y. H. (2003, December). linfl team (2003): The Competence of Geometric Argument in Taiwan Adolescents. In International Conference on Science & Mathematics Learning (pp. 16-18).
Liew, J., McTigue, E. M., Barrois, L., & Hughes, J. N. (2008). Adaptive and effortful control and academic self-efficacy beliefs on achievement: A longitudinal study of 1st through 3rd graders. Early Childhood Research Quarterly, 23(4), 515-526
Lai, M. L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T. C., Lee, S. W. Y., Lee, M.-H., Chiou, G.-L., Liang, J.-C., Tsai, C.-C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90-115.
Lee, W. K., & Wu, C. J. (2018). Eye movements in integrating geometric text and figure: Scanpaths and given-new effects. International Journal of Science and Mathematics Education, 16(4), 699-714.
Mills, N., Pajares, F., & Herron, C. (2006). A reevaluation of the role of anxiety: Self‐efficacy, anxiety, and their relation to reading and listening proficiency. Foreign Language Annals, 39(2), 276-295.
Nisbett, R. E., & Wilson, T. 0 .(1977). Telling more than we can know: Verbal reports on mental processes. Psychological Revie, 84, 231-259.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In 3rd Mediterranean Conference on Mathematical Education (pp. 115-124).
Ö sterholm, M. (2006). Characterizing reading comprehension of mathematics texts. Educational Studies in Mathematics, 63, 325-346.
Ott, N., Brünken, R., Vogel, M., & Malone, S. (2018). Multiple symbolic representations: The combination of formula and text supports problem solving in the mathematical field of propositional logic. Learning and Instruction, 58, 88-105.
Phillips, D., & Zimmerman, M. (1990). The developmental course of perceived competence and incompetence among competent children. In R. Sternberg & J. Kollogian (Eds.), Competence Considered (pp. 41-66). New Haven, CT: Yale University Press.
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58(3), 193.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429.
Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. New Jersey: Merrill Prentice Hall.
Patall, E.A., Cooper, H. & Robinson J.C. (2008). The effects of choice on intrinsic motivation and related outcomes: a meta-analysis of research findings. Psychological Bulletin, 134(2), 270-300
Prat-Sala, M., & Redford, P. (2012). Writing essays: Does self-efficacy matter? The relationship between self-efficacy in reading and in writing and undergraduate students’ performance in essay writing. Educational Psychology, 32(1), 9-20.
Parker, P. D., Marsh, H. W., Ciarrochi, J., Marshall, S., & Abduljabbar, A. S. (2014). Juxtaposing math self-efficacy and self-concept as predictors of long-term achievement outcomes. Educational Psychology, 34(1), 29-48.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457-1506.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295-312.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4-36.
Stankov, L., Lee, J., Luo, W., & Hogan, D. J. (2012). Confidence: A better predictor of academic achievement than self-efficacy, self-concept and anxiety? Learning and Individual Differences, 22(6), 747-758.
Strobel, B., Lindner, M. A., Saß, S., & Köller, O. (2018). Task-irrelevant data impair processing of graph reading tasks: An eye tracking study. Learning and Instruction, 55, 139-147.
Soemer, A., & Schiefele, U. (2019). Text difficulty, topic interest, and mind wandering during reading. Learning and Instruction, 61, 12-22.
Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161-177.
Trevors, G., Feyzi-Behnagh, R., Azevedo, R., & Bouchet, F. (2016). Self-regulated learning processes vary as a function of epistemic beliefs and contexts: Mixed method evidence from eye tracking and concurrent and retrospective reports. Learning and Instruction, 42, 31-46.
Tsai, M.-J., Hsu, P.-F. & Pai, H.-T. (2018, June). Lag sequential analysis in Eye-Tracking Data Analyzer (EDA) for educational researchers. Poster presented at the 4th International Symposium on Educational Technology (ISET 2018), Osaka, Japan.
Van Marlen, T., Van Wermeskerken, M., Jarodzka, H., & Van Gog, T. (2018). Effectiveness of eye movement modeling examples in problem solving: The role of verbal ambiguity and prior knowledge. Learning and Instruction, 58, 274-283.
van Lieshout, E. C., & Xenidou-Dervou, I. (2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective. Educational Studies in Mathematics, 98(1), 39-55.
Wigfield, A. (1997). Reading motivation: A domain-specific approach to motivation. Educational Psychologist, 32(2), 59-68.
Yang, K. L., & Lin, F. L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics, 67(1), 59-76
Yang, F. Y., Chang, C. Y., Chien, W. R., Chien, Y. T., & Tseng, Y. H. (2013). Tracking learners' visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208-220.
Yang, F. Y., Tsai, M. J., Chiou, G. L., Lee, S. W. Y., Chang, C. C., & Chen, L. L. (2018). Instructional suggestions supporting science learning in digital environments based on a review of eye tracking studies. Journal of Educational Technology & Society, 21(2), 28-45.
Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25(1), 82-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊