跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓立庭
研究生(外文):Lee-Ting Cho
論文名稱:基於專利引證分析探討自動駕駛技術之發展
論文名稱(外文):The Development of Autonomous Driving Technology: Perspectives from Patent Citation Analysis
指導教授:劉顯仲劉顯仲引用關係何秀青何秀青引用關係
指導教授(外文):John S. LiuHsiu-Ching Ho
口試委員:陳正綱賴奎魁盧煜煬黃啟佑管中徽何秀青劉顯仲
口試日期:2019-05-17
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:97
中文關鍵詞:自動駕駛無人車專利引證交互引證主路徑分析專利分群
外文關鍵詞:autonomous vehicleself-drivingpatent citationcross-citationmain path analysispatent grouping
相關次數:
  • 被引用被引用:5
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:3
由於自動駕駛技術的逐漸發展,自動駕駛車產品化及商業化的可能性近年來已被廣泛討論,為掌握參與自動駕駛技術開發相關企業間的知識流動、自動駕駛技術的發展演化,以及自動駕駛涉及的各種專利類型與技術方案,本研究檢索自動駕駛相關美國專利,並對該些專利引證資料進行交互引證分析、主路徑分析及專利分群分析。
關於主要專利權人間知識流動,交互引證網路結果顯示General Motors 及 Google扮演了知識流動與技術貢獻的重要角色。主路徑分析的三個主要技術發展階段衍生出幾個重要觀察,包括:通訊系統的發展將成為自動駕駛技術疊代的關鍵;自動駕駛感測技術將會導入更多人工智慧,以提升自駕能力;整車廠必須和資訊及通訊科技(ICT)公司合作,可補足自身技術缺口。最後,主要專利群組及群組內的主要專利技術顯示:感測資料處理能力的強化將提升自動駕駛技術整體發展;資料處理技術橫跨多個專利群組,為自動駕駛技術的核心;商用自動駕駛車可能為產品化的先驅,如物流及租賃應用;專利技術的多元化將驅使整車廠建構一套全新的專利佈局及商業策略,亦即,除了自行佈局申請專利外,亦需要強化其他的專利策略,包括交互授權、取得授權、購買專利及選擇專利含金量高的合作對象。
本研究透過縱向(主路徑分析)及橫向(專利分群)的分析,探討自駕車發展方向,並提供一些觀察供自動駕駛領域的研究開發者及專利管理者參考,包括對於自動駕駛技術掌握、專利佈局模式,以及專利交易買賣的策略規劃。此外,本研究也可能促使欲投入自動駕駛產業的人員或組織,重新思考如何推進與專利技術相關的商業決策。
Autonomous vehicles have been widely discussed recently due to the fast improvement of related technologies. This study surveys autonomous vehicle patents in a systematic and quantitative manner by applying three patent citation based analysis. Cross-citation analysis discloses the knowledge flow among companies, main path analysis uncovers the technology development trajectory, and patent group analysis shows the patent deployment of specific technologies.
Cross-citation analysis on the top 30 patent owners shows that General Motors and Google play important roles in knowledge transfer. Their patented technologies are good references for developers who are developing autonomous vehicle. Three possible development can be inferred from the results of main path analysis: 1) the communication system can be further developed to pursue vehicle-to-everything; 2) perception technologies will integrate artificial intelligence to enhance autonomy of vehicle; and 3) vehicle makers will cooperate with ICT companies to develop autonomous vehicles with data processing technologies support. When further analyzing the patent groups, we also present four observations: 1) sensing data processing may trigger improvement of some key self-driving technologies; 2) data processing is essential for the eco-system of an autonomous vehicle; 3) commercial autonomous vehicles may lead the way in autonomous vehicle development, such as applications for logistics and rental business; and 4) car makers may need new patent strategies for business operation.
In regard to IP management, this study discloses the patent development history from the vertical (patent trajectory) and horizontal (patent group) viewpoints, which can benefit IP practitioners in making plans on patent application, patent deployment, and patent transaction. With respect to business management, car makers’ strategies for autonomous vehicle development help participants in designing business and patent strategy in this industry
中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VIII
1. INTRODUCTION 1
2. LITERATURE REVIEW 4
2.1 Background 4
2.2 Technologies of Autonomous Vehicle 6
2.3 Patent Citation and Knowledge Network 10
3. METHODOLOGY 12
3.1 Main Paths for Patents 12
3.2 Grouping of Patents 15
3.3 Text Clustering on the Patent Groups 16
4. BASIC STATISTICS 17
4.1 Data Collection 17
4.2 Major Patent Owner 18
5. KNOWLEDGE FLOW 20
5.1 Knowledge Flow among Nations 20
5.2 Knowledge Flow among Companies 20
5.3 Discussion 24
6. DEVELOPMENT TREND 26
6.1 Autonomous Vehicle Technology Development (key-route 10) 26
6.2 Three Evolving Phases of Autonomous Vehicle Technology Development (key-route 20) 29
6.2.1 Phase I: Vehicle moves with pre-determined trajectory 31
6.2.2 Phase II: Improve autonomy of vehicle by fusing more smart technologies 33
6.2.3 Phase III: Vehicle communications become main topic for patent inventions 36
6.3. Discussions 38
6.3.1 Communication system will be further developed to pursue vehicle-to-everything 38
6.3.2 The perception technologies will integrate with artificial intelligence 39
6.3.3 Vehicle makers are likely to cooperate with ICT companies to develop autonomous vehicles 41
7. TECHNOLOGY GROUP ANALYSIS 44
7.1 Group 1: Robot and Vehicle Path Planning 48
7.2 Group 2: Sensing Data Processing for Autonomous Vehicle Control 49
7.3 Group 3: Data Communication for Autonomous Vehicle Control 51
7.4 Group 4: Robot System and Control 52
7.5 Group 5: Fleet Management for Autonomous Vehicle 53
7.6 Group 6: Wireless Charging for Autonomous Vehicle 55
7.7 Group 7: Autonomy Control Based on Driver Behavior 56
7.8 Group 8: Data Application for Driver Assistance System 58
7.9 Group 9: LIDAR Technologies for Autonomous Vehicle 59
7.10 Group 10: Autonomous Vehicle Control Using Artificial Neural Network 61
7.11 Discussions 62
7.11.1 Sensing data processing may trigger improvement of some key self-driving technologies 63
7.11.2 Data processing becomes essential for the eco-system of autonomous vehicle 64
7.11.3 Commercial autonomous vehicle may lead the way 66
7.11.4 Car makers need new patent strategies for business operations 67
8. CONCLUSION 71
REFERENCES 74
APPENDIX 81
Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: A survey. Ieee Transactions on Vehicular Technology, 65(12), 9457-9470.
Alcacer, J., & Gittelman, M. (2006). Patent citations as a measure of knowledge flows: The influence of examiner citations. The Review of Economics and Statistics, 88(4), 774-779.
Alessandrini, A., Campagna, A., Delle Site, P., Filippi, F., & Persia, L. (2015). Automated vehicles and the rethinking of mobility and cities. Transportation Research Procedia, 5, 145-160.
Almeida, P. (1996). Knowledge sourcing by foreign multinationals: Patent citation analysis in the US semiconductor industry. Strategic management journal, 17(S2), 155-165.
Aronoff, R. (2013). Acquiring patents to support innovation and value. IAM(61), 39-46.
Bansal, P., & Kockelman, K. M. (2018). Are we ready to embrace connected and self-driving vehicles? A case study of Texans. Transportation, 45(2), 641-675.
Barberá-Tomás, D., Jiménez-Sáez, F., & Castelló-Molina, I. (2011). Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy, 40(3), 473-486.
Batagelj, V. (2003). Efficient algorithms for citation network analysis. http://arxiv.org/abs/cs.DL/0309023 Accessed Jun 3 2015.
Batagelj, V., & Mrvar, A. (1998). Pajek-program for large network analysis. Connections, 21(2), 47-57.
Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., & Tsugawa, S. Overview of platooning systems. In Proceedings of the 19th ITS World Congress, Oct 22-26, Vienna, Austria (2012), 2012
Berman, B. (2012). Build, license, buy or steal. IAM(51), 30.
Bhupatiraju, S., Nomaler, O., Triulzi, G., & Verspagen, B. (2012). Knowledge flows - Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Research Policy, 41(7), 1205-1218, doi:DOI 10.1016/j.respol.2012.03.011.
Bijuraj, L. Clustering and its applications. In Proceedings of National Conference on New Horizons in IT-NCNHIT, 2013 (Vol. 1, pp. 169-172)
Bonin-Font, F., Ortiz, A., & Oliver, G. (2008). Visual navigation for mobile robots: A survey. [Review]. Journal of Intelligent & Robotic Systems, 53(3), 263-296, doi:10.1007/s10846-008-9235-4.
Boyraz, P., Acar, M., & Kerr, D. (2008). Multi-sensor driver drowsiness monitoring. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(11), 2041-2062.
Breschi, S., & Lissoni, F. (2004). Knowledge networks from patent data. In Handbook of quantitative science and technology research (pp. 613-643): Springer.
Bruck, P., Rethy, I., Szente, J., Tobochnik, J., & Erdi, P. (2016). Recognition of emerging technology trends: class-selective study of citations in the US Patent Citation Network. [Article]. Scientometrics, 107(3), 1465-1475, doi:10.1007/s11192-016-1899-0.
Buehler, M., Iagnemma, K., & Singh, S. (2009). The DARPA urban challenge: autonomous vehicles in city traffic (Vol. 56): springer.
Calero-Medina, C., & Noyons, E. C. M. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics, 2(4), 272-279, doi:DOI 10.1016/j.joi.2008.09.005.
Carmona, J., García, F., Martín, D., Escalera, A., & Armingol, J. (2015). Data fusion for driver behaviour analysis. Sensors, 15(10), 25968-25991.
Chang, S. B., Lai, K. K., & Chang, S. M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. [Article]. Technological Forecasting and Social Change, 76(1), 107-117, doi:10.1016/j.techfore.2008.03.014.
Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., et al. (2017). Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70-76.
Diakaki, C., Papageorgiou, M., Papamichail, I., & Nikolos, I. (2015). Overview and analysis of vehicle automation and communication systems from a motorway traffic management perspective. Transportation Research Part A: Policy and Practice, 75, 147-165.
Dikmen, M., & Burns, C. M. (2016). Autonomous driving in the real world: experiences with tesla autopilot and summon. Paper presented at the Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA,
Endsley, M. R. (2017). Autonomous driving systems: A preliminary naturalistic study of the Tesla Model S. Journal of Cognitive Engineering and Decision Making, 11(3), 225-238, doi:10.1177/1555343417695197.
Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. [Article]. Scientometrics, 95(1), 225-242, doi:10.1007/s11192-012-0796-4.
Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. [Article]. Transportation Research Part a-Policy and Practice, 77, 167-181, doi:10.1016/j.tra.2015.04.003.
Filippi, A., Moerman, K., Daalderop, G., Alexander, P. D., Schober, F., & Pfliegl, W. (2016). Ready to roll: Why 802.11 p beats LTE and 5G for V2x. WhitePaper by NXP Semiconductors, Cohda Wireless and Siemens. Nijmegen, Teh Netherlands: NXP Semiconductors.
Frazzoli, E., Dahleh, M. A., & Feron, E. (2002). Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1), 116-129, doi:10.2514/2.4856.
Garfield, E., Sher, I. H., & Torpie, R. J. (1964). The Use of Citation Data in Writing The History of Science. Philadelphia, PA: Institute for Scientific Information.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826.
Goerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion planning algorithms from the perspective of autonomous UAV guidance. Journal of Intelligent and Robotic Systems, 57(1-4), 65.
Goldstein, L. M. (2013). True Patent Value: Defining Quality in Patents and Patent Portfolios: True Value Press.
Goldstein, L. M. (2014). Patent Portfolios: Quality, Creation, and Cost: Larry Goldstein.
González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2015). A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145.
Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2000). Market value and patent citations: A first look. national bureau of economic research.
Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. [Review]. Proceedings of the IEEE, 85(1), 6-23, doi:10.1109/5.554205.
Han, W., Chau, K., Jiang, C., & Liu, W. (2018). Accurate position detection in wireless power transfer using magnetoresistive sensors for implant applications. IEEE Transactions on Magnetics(99), 1-5.
Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511-515, doi:10.1162/003465399558265.
Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. [Article]. Research Policy, 32(8), 1343-1363, doi:10.1016/s0048-7333(02)00124-5.
Harris, J. K., Luke, D. A., Zuckerman, R. B., & Shelton, S. C. (2009). Forty years of secondhand smoke research: the gap between discovery and delivery. American journal of preventive medicine, 36(6), 538-548.
Ho, J. C., Saw, E.-C., Lu, L. Y. Y., & Liu, J. S. (2013). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66-79.
Howard, D., & Dai, D. Public perceptions of self-driving cars: The case of Berkeley, California. In the 93rd Annual Meeting of Transportation Research Board, 2013: Washington, DC.
Hu, A. G., & Jaffe, A. B. (2003). Patent citations and international knowledge flow: the cases of Korea and Taiwan. International journal of industrial organization, 21(6), 849-880.
Huang, L., & Barth, M. Tightly-coupled LIDAR and computer vision integration for vehicle detection. In 2009 IEEE Intelligent Vehicles Symposium, 2009 (pp. 604-609): IEEE
Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63.
Jaffe, A. B., Trajtenberg, M., & Fogarty, M. S. (2000). Knowledge spillovers and patent citations: evidence from a survey of inventors. American Economic Review, 90(2), 215-218, doi:10.1257/aer.90.2.215.
Jung, H. G., Lee, Y. H., Kang, H. J., & Kim, J. (2009). Sensor fusion-based lane detection for LKS+ACC system. [journal article]. International Journal of Automotive Technology, 10(2), 219-228, doi:10.1007/s12239-009-0026-0.
Kanade, T., Thorpe, C., & Whittaker, W. (1986). Autonomous land vehicle project at CMU. Paper presented at the Proceedings of the 1986 ACM fourteenth annual conference on Computer science, Cincinnati, Ohio, USA,
Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162-1182.
Kidono, K., Miyasaka, T., Watanabe, A., Naito, T., & Miura, J. Pedestrian recognition using high-definition LIDAR. In 2011 IEEE Intelligent Vehicles Symposium (IV), 2011 (pp. 405-410): IEEE
Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812.
Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.
Litman, T. (2019). Autonomous vehicle implementation predictions: Implications for transport planning.
Liu, J. S., Ho, M. H.-C., & Lu, L. Y. Y. (2017). Recent themes in social networking service research. PloS one, 12(1), e0170293.
Liu, J. S., & Kuan, C. H. (2016). A new approach for main path analysis: Decay in knowledge diffusion. Journal of the Association for Information Science and Technology, 67(2), 465-476, doi:10.1002/asi.23384.
Liu, J. S., & Lu, L. Y. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528-542.
Liu, J. S., Lu, L. Y. Y., & Ho, M. H.-C. (2019). A few notes on main path analysis. [journal article]. Scientometrics, 119(1), 379-391, doi:10.1007/s11192-019-03034-x.
Liu, J. S., Lu, L. Y. Y., & Lu, W. M. (2016). Research fronts in data envelopment analysis. [Review]. Omega-International Journal of Management Science, 58, 33-45, doi:10.1016/j.omega.2015.04.004.
Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013a). Data envelopment analysis 1978-2010: A citation-based literature survey. Omega-International Journal of Management Science, 41(1), 3-15, doi:DOI 10.1016/j.omega.2010.12.006.
Liu, J. S., Lu, L. Y. Y., Lu, W. M., & Lin, B. J. Y. (2013b). A survey of DEA applications. Omega-International Journal of Management Science, 41(5), 893-902, doi:DOI 10.1016/j.omega.2012.11.004.
Lu, L. Y. Y., Lin, B. J., Liu, J. S., & Yu, C.-Y. (2012). Ethics in nanotechnology: What’s being done? What’s missing? Journal of business ethics, 109(4), 583-598.
Lu, L. Y. Y., & Liu, J. S. (2013). An innovative approach to identify the knowledge diffusion path: the case of resource-based theory. Scientometrics, 94(1), 225-246.
Lucio-Arias, D., & Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite (TM)-based historiograms. Journal of the American Society for Information Science and Technology, 59(12), 1948-1962, doi:Doi 10.1002/Asi.20903.
Luo, R., Lin, Y., & Ding, Q. Studying MRI technology development using patent analysis. In 2013 6th International Conference on Biomedical Engineering and Informatics, 2013 (pp. 373-377): IEEE
Martinez-Diaz, M., Soriguera, F., & Perez, I. (2019). Autonomous driving: a bird's eye view. [Review]. Iet Intelligent Transport Systems, 13(4), 563-579, doi:10.1049/iet-its.2018.5061.
Milakis, D., Van Arem, B., & Van Wee, B. (2017). Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems, 21(4), 324-348.
Montanaro, U., Dixit, S., Fallah, S., Dianati, M., Stevens, A., Oxtoby, D., et al. (2019). Towards connected autonomous driving: review of use-cases. Vehicle System Dynamics, 57(6), 779-814, doi:10.1080/00423114.2018.1492142.
Moore, S., Haines, V., Hawe, P., & Shiell, A. (2006). Lost in translation: a genealogy of the "social capital'' concept in public health. Journal of Epidemiology and Community Health, 60(8), 729-734, doi:DOI 10.1136/jech.2005.041848.
Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582.
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Park, B., Lee, Y., & Han, W. Y. Trajectory generation method using Bézier spiral curves for high-speed on-road autonomous vehicles. In 2014 IEEE International Conference on Automation Science and Engineering (CASE), 18-22 Aug. 2014 2014 (pp. 927-932). doi:10.1109/CoASE.2014.6899437.
Park, H., Suh, S., & Lee, J. Scientific and technological knowledge flow and technological innovation: Quantitative approach using patent citation. In 2011 Proceedings of PICMET '11: Technology Management in the Energy Smart World (PICMET), 31 July-4 Aug. 2011 2011 (pp. 1-13)
Pilkington, A., Dyerson, R., & Tissier, O. (2002). The electric vehicle:: Patent data as indicators of technological development. World patent information, 24(1), 5-12.
Rosenzweig, J., & Bartl, M. (2015). A review and analysis of literature on autonomous driving. E-Journal Making-of Innovation.
SAE (2016). Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems.
Schwarz, B. (2010). LIDAR: Mapping the world in 3D. Nature Photonics, 4(7), 429.
Seif, H. G., & Hu, X. (2016). Autonomous driving in the iCity—HD maps as a key challenge of the automotive industry. Engineering, 2(2), 159-162.
Sharma, P., Tripathi, R., & Tripathi, R. C. Patent citation network analysis for measuring the ICT patent progress in India. In 2016 International Conference on Computer Communication and Informatics (ICCCI), 7-9 Jan. 2016 2016 (pp. 1-4). doi:10.1109/ICCCI.2016.7479980.
Shiller, Z., & Gwo, Y. (1991). Dynamic motion planning of autonomous vehicles. IEEE Transactions on Robotics and Automation, 7(2), 241-249, doi:10.1109/70.75906.
Shiue, Y.-C., & Chang, C.-C. Forecasting unmanned vehicle technologies: Use of patent map. In 2010 Second International Conference on Computer Research and Development, 2010 (pp. 752-755): IEEE
Song, W., & Park, S. C. (2009). Genetic algorithm for text clustering based on latent semantic indexing. Computers & Mathematics with Applications, 57(11-12), 1901-1907.
Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H. F. (1999). A high integrity IMU/GPS navigation loop for autonomous land vehicle applications. IEEE Transactions on Robotics and Automation, 15(3), 572-578.
Tsugawa, S., Jeschke, S., & Shladover, S. E. (2016). A review of truck platooning projects for energy savings. IEEE Transactions on Intelligent Vehicles, 1(1), 68-77.
Verma, V., Kumar, R., & Hsu, S. 3D building detection and modeling from aerial LIDAR data. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006 (Vol. 2, pp. 2213-2220): IEEE
Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93-115, doi:10.1142/s0219525907000945.
Wallace, R. S., Stentz, A., Thorpe, C. E., Moravec, H. P., Whittaker, W., & Kanade, T. First Results in Robot Road-Following. In IJCAI, 1985 (pp. 1089-1095): Citeseer
Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular cloud computing. [Review]. Journal of Network and Computer Applications, 40, 325-344, doi:10.1016/j.jnca.2013.08.004.
Yang, F., Wang, S., Li, J., Liu, Z., & Sun, Q. (2014). An overview of internet of vehicles. China Communications, 11(10), 1-15.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top