|
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. Bailey, A. A., Pentina, I., Mishra, A. S., & Ben Mimoun, M. S. (2017). Mobile payments adoption by US consumers: an extended TAM. International Journal of Retail & Distribution Management, 45(6), 626-640. doi:10.1108/ijrdm-08-2016-0144 Bandura, A., & Schunk, D. H. (1981). Cultivating competence, self-efficacy, and intrinsic interest through proximal self-motivation. Journal of personality and social psychology, 41(3), 586. Bauer, H. H., Reichardt, T., Barnes, S. J., & Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of electronic commerce research, 6(3), 181. Chandra, S., Srivastava, S. C., & Theng, Y.-L. (2010). Evaluating the role of trust in consumer adoption of mobile payment systems: An empirical analysis. CAIS, 27(29), 27. Chang, S. E., Shen, W. C., & Liu, A. Y. (2016). Why mobile users trust smartphone social networking services? A PLS-SEM approach. Journal of Business Research, 69(11), 4890-4895. doi:10.1016/j.jbusres.2016.04.048 Chen, K. Y., & Chang, M. L. (2013). User acceptance of 'near field communication' mobile phone service: an investigation based on the 'unified theory of acceptance and use of technology' model. Service Industries Journal, 33(6), 609-623. doi:10.1080/02642069.2011.622369 Chen, L.-d. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32-52. Chu, R. J., & Chu, A. Z. (2010). Multi-level analysis of peer support, Internet self-efficacy and e-learning outcomes - The contextual effects of collectivism and group potency. Computers & Education, 55(1), 145-154. doi:10.1016/j.compedu.2009.12.011 Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284. Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181. De Kerviler, G., Demoulin, N. T., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31, 334-344. de Kerviler, G., Demoulin, N. T. M., & Zidda, P. (2016). Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? Journal of Retailing and Consumer Services, 31, 334-344. doi:10.1016/j.jretconser.2016.04.011 Gao, L., & Waechter, K. A. (2017). Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation. Information Systems Frontiers, 19(3), 525-548. He, Y. J. (2013). Study of Magnetic Field Coupling Technologies in Activating RFID-SIM Card Mobile Payments. Wireless Personal Communications, 71(1), 243-254. doi:10.1007/s11277-012-0813-1 Kankanhalli, A., Tan, B. C., & Wei, K.-K. (2005). Contributing knowledge to electronic knowledge repositories: An empirical investigation. MIS quarterly, 29(1). Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322. Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and satisfaction, two stepping stones for successful e-commerce relationships: A longitudinal exploration. Information systems research, 20(2), 237-257. Kreyer, N., Pousttchi, K., & Turowski, K. (2002). Standardized payment procedures as key enabling factor for mobile commerce. Paper presented at the International Conference on Electronic Commerce and Web Technologies. Kujala, S., Mugge, R., & Miron-Shatz, T. (2017). The role of expectations in service evaluation: A longitudinal study of a proximity mobile payment service. International Journal of Human-Computer Studies, 98, 51-61. doi:10.1016/j.ijhcs.2016.09.011 Lee, H., Park, H., & Kim, J. (2013). Why do people share their context information on Social Network Services? A qualitative study and an experimental study on users' behavior of balancing perceived benefit and risk. International Journal of Human-Computer Studies, 71(9), 862-877. doi:10.1016/j.ijhcs.2013.01.005 Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. Lee, Z. W., Chan, T. K., Balaji, M., & Chong, A. Y.-L. (2018). Why people participate in the sharing economy: an empirical investigation of Uber. Internet Research, 28(3), 829-850. Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS quarterly, 657-678. Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business, 12(1), 25-64. Liao, Y. J., He, Y. C., Li, F. G., & Zhou, S. J. (2018). Analysis of a mobile payment protocol with outsourced verification in cloud server and the improvement. Computer Standards & Interfaces, 56, 101-106. doi:10.1016/j.csi.2017.09.008 Liebana-Cabanillas, F., de Luna, I. R., & Montoro-Rios, F. (2017). Intention to use new mobile payment systems: a comparative analysis of SMS and NFC payments. Economic Research-Ekonomska Istrazivanja, 30(1), 892-910. doi:10.1080/1331677x.2017.1305784 Liebana-Cabanillas, F., de Luna, I. R., & Montoro-Rios, F. J. (2015). User behaviour in QR mobile payment system: the QR Payment Acceptance Model. Technology Analysis & Strategic Management, 27(9), 1031-1049. doi:10.1080/09537325.2015.1047757 Liebana-Cabanillas, F., Molinillo, S., & Ruiz-Montanez, M. (2019). To use or not to use, that is the question: Analysis of the determining factors for using NFC mobile payment systems in public transportation. Technological Forecasting and Social Change, 139, 266-276. doi:10.1016/j.techfore.2018.11.012 Lin, K.-Y., & Lu, H.-P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152-1161. Lin, W. R., Wang, Y. H., & Shih, K. H. (2017). Understanding consumer adoption of mobile commerce and payment behaviour: an empirical analysis. International Journal of Mobile Communications, 15(6), 628-654. doi:10.1504/ijmc.2017.10005646 Lopez, M. H., Felix, E. M., Ruiz, R. O., & Ortiz, O. G. (2016). Influence of social motivation, self-perception of social efficacy and normative adjustment in the peer setting. Psicothema, 28(1), 32-39. doi:10.7334/psicothema2015.135 Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393-403. Lu, Y. B., Yang, S. Q., Chau, P. Y. K., & Cao, Y. Z. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393-403. doi:10.1016/j.im.2011.09.006 Ma, L., Zhang, X., & Ding, X. Y. (2018). Social media users' share intention and subjective well-being: An empirical study based on WeChat. Online Information Review, 42(6), 784-801. doi:10.1108/oir-02-2017-0058 MIC. (2018). Mobile payment consumer survey in Taiwan - consumer analysis. Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350-363. Nambiar, S., & Lu, C.-T. (2005). M-payment solutions and m-commerce fraud management. In Advances in security and payment methods for mobile commerce (pp. 192-213): IGI Global. Ogbanufe, O., & Kim, D. J. (2018). Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment. Decision support systems, 106, 1-14. Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. doi:10.1016/j.chb.2016.03.030 Ooi, K.-B., & Tan, G. W.-H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33-46. Park, J., Amendah, E., Lee, Y., & Hyun, H. (2019). M-payment service: Interplay of perceived risk, benefit, and trust in service adoption. Human Factors and Ergonomics in Manufacturing & Service Industries, 29(1), 31-43. doi:10.1002/hfm.20750 Park, J., Amendah, E., Lee, Y., & Hyun, H. (2019). M‐payment service: Interplay of perceived risk, benefit, and trust in service adoption. Human Factors and Ergonomics in Manufacturing & Service Industries, 29(1), 31-43. Rogers, E. M. (2010). Diffusion of innovations: Simon and Schuster. Ryu, H.-S. (2018). What makes users willing or hesitant to use Fintech?: the moderating effect of user type. Industrial Management & Data Systems, 118(3), 541-569. Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, 100823. Singh, N., Srivastava, S., & Sinha, N. (2017). Consumer preference and satisfaction of M-wallets: a study on North Indian consumers. International Journal of Bank Marketing, 35(6), 944-965. doi:10.1108/ijbm-06-2016-0086 Su, P., Wang, L., & Yan, J. (2018). How users’ Internet experience affects the adoption of mobile payment: a mediation model. Technology Analysis & Strategic Management, 30(2), 186-197. Torres, R., & Gerhart, N. (2019). Mobile Proximity Usage Behaviors Based on User Characteristics. Journal of Computer Information Systems, 59(2), 161-170. doi:10.1080/08874417.2017.1320954 Tsai, M. T., & Cheng, N. C. (2010). Programmer perceptions of knowledge-sharing behavior under social cognitive theory. Expert Systems with Applications, 37(12), 8479-8485. doi:10.1016/j.eswa.2010.05.029 Tzou, R.-C., & Lu, H.-P. (2009). Exploring the emotional, aesthetic, and ergonomic facets of innovative product on fashion technology acceptance model. Behaviour & Information Technology, 28(4), 311-322. Wipawayangkool, K., & Teng, J. T. C. (2019). Profiling knowledge workers' knowledge sharing behavior via knowledge internalization. Knowledge Management Research & Practice, 17(1), 70-82. doi:10.1080/14778238.2018.1557798 Xiao, L., Farooq, U., Carroll, J. M., & Rosson, M. B. (2013). The development of community members' roles in partnership research projects: An empirical study. Journal of the American Society for Information Science and Technology, 64(11), 2340-2353. Yang, H. L., & Lin, S. L. (2019). The reasons why elderly mobile users adopt ubiquitous mobile social service. Computers in Human Behavior, 93, 62-75. doi:10.1016/j.chb.2018.12.005 Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems, 115(2), 253-269. Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision support systems, 54(2), 1085-1091.
|