|
[1] Le, Q. V. & Mikolov, T. (2014). Distributed Representations of Sentences and Documents.. ICML (p./pp. 1188--1196), .
[2] Pan, S. & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345--1359.
[3] Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135--146.
[4] Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S and Dean, Jeff. "Distributed Representations of Words and Phrases and their Compositionality." In Advances in Neural Information Processing Systems 26 , edited by C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K.Q. Weinberger , 3111--3119. : , 2013.
[5] Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C. & Joulin, A. (2017). Advances in Pre-Training Distributed Word Representations. Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018), .
[6] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y. & Potts, C. (2011). Learning word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (p./pp. 142--150), .
[7] Zhang, X., Zhao, J. & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in neural information processing systems (p./pp. 649--657), .
|