(3.236.228.250) 您好!臺灣時間:2021/04/13 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王雅柔
研究生(外文):Ya-Rou Wang
論文名稱:聊天機器人結合關懷行為之實踐探討
論文名稱(外文):Discussion on the practice of chatbot combined with caring behavior
指導教授:黃世禎黃世禎引用關係
指導教授(外文):Sun-Jen Huang
口試委員:黃世禎盧希鵬羅天一
口試委員(外文):Sun-Jen HuangHsi-Peng LuTain-yi Luor
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:聊天機器人對話式商務主動關心給予關懷關懷行為
外文關鍵詞:chatbotConversational Commercegive careactive carecaring behavior
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於現今社會的快速發展帶來了激烈競爭,青少年在就學時期就得面臨高度的學業壓力,除此之外,還有家庭、人際互動的種種煩惱,若這些壓力無法得到妥善處理,最終可能導致嚴重的後果,但據研究顯示,僅5成有心理疾病的人曾尋求協助,許多人可能會因為羞於表露自我而選擇迴避或不去重視自己的心理問題。而隨著智慧型手機和即時通訊軟體的發展,使得聊天型機器人逐漸崛起,經報導指出,有些人在與聊天機器人互動時,由於無需擔心恥辱或成見,會比跟人類治療師還能放鬆並敞開心扉,因此聊天機器人有潛力成為輔助與擴展人類治療師工作的絕佳工具。
本研究透過文獻分析法進行關懷行為之探討與實踐方式,在使用系統建置與驗證法,將關懷行為應用至聊天機器人上,並提出一套關懷型聊天機器人的開發架構及指引。使用問卷統計的方式進行驗證,針對大學生進行關懷型聊天機器人實測,發現使用過聊天機器人的人之中,只有少數人有使用過關懷型聊天機器人,系統提供有幫助的關懷資訊,並且可舒緩使用者心中的壓力或情緒。
本研究認為關懷型聊天機器人應有目的性的給予使用者激勵與鼓勵以及恰當的建議,讓使用者在無意識中,進行思想認知重組,改善使用者對於本身的淺在心理問題。本研究透過網路資源或對談內容取得使用者自身的故事與經歷,依照分析出的情緒與需求,透過自然語言理解技術試圖理解使用者意圖,提供能有效解決使用者心理壓力的方法。
Nowadays, rapid social development has brought about fierce competition. Thus, teens face high academic pressure when they are in school. In addition, teens also face pressure from family and interpersonal relationships. Therefore, if these pressures are not released properly, it might cause a serious problem in the end. According to the research, only 50 percent of the patients had asked for help. Most people choose to ignore their mental issues because they do not think it is important to mention them. Moreover, the ChatBot is gradually growing with the development of applications. On the other hand, some people are more willing to talk to the ChatBot rather than to a real therapist. The reason is people can talk about anything without worrying about prejudice. Hence, ChatBot is seen as the best tool to help with therapy.

The study and methods of this research on caring behavior are carried out through literafure analysis. The research uses systematic construction and experiments to implement the caring behavior on the ChatBot. And thereby, suggests a framework and guidelines for designing a Caring ChatBot. The research uses the questionnaire method to validate the effectiveness of the Caring ChatBot. Thus, the research results showed that only a few people who used the Caring ChatBot felt that the chat was useful. Moreover, they felt better and were able to cope with their pressure.

The Caring ChatBot is considered to have a purpose to encourage users and give proper suggestions. Thus, the users can reorganize their thinking and improve their mental problems subconsciously. The research collects the users' stories and experience from internet data or conversations with the users. Then, the system analyzes the users' emotion and needs. Besides, the system uses NLP to understand the users' intentions and thereby provides an effective method to help the users to cope with their mental pressure.
Nowadays, rapid social development has brought about fierce competition. Thus, teens face high academic pressure when they are in school. In addition, teens also face pressure from family and interpersonal relationships. Therefore, if these pressures are not released properly, it might cause a serious problem in the end. According to the research, only 50 percent of the patients had asked for help. Most people choose to ignore their mental issues because they do not think it is important to mention them. Moreover, the ChatBot is gradually growing with the development of applications. On the other hand, some people are more willing to talk to the ChatBot rather than to a real therapist. The reason is people can talk about anything without worrying about prejudice. Hence, ChatBot is seen as the best tool to help with therapy.

The study and methods of this research on caring behavior are carried out through literafure analysis. The research uses systematic construction and experiments to implement the caring behavior on the ChatBot. And thereby, suggests a framework and guidelines for designing a Caring ChatBot. The research uses the questionnaire method to validate the effectiveness of the Caring ChatBot. Thus, the research results showed that only a few people who used the Caring ChatBot felt that the chat was useful. Moreover, they felt better and were able to cope with their pressure.

The Caring ChatBot is considered to have a purpose to encourage users and give proper suggestions. Thus, the users can reorganize their thinking and improve their mental problems subconsciously. The research collects the users' stories and experience from internet data or conversations with the users. Then, the system analyzes the users' emotion and needs. Besides, the system uses NLP to understand the users' intentions and thereby provides an effective method to help the users to cope with their mental pressure.
參考文獻
網路文獻:
1. https://www.bnext.com.tw/article/46983/tuituihouse-launched-taiwan-first-ai-chatbot-for-real-estate-market
2. https://www.florence.chat/
https://www.healthcaredive.com/news/chatbots-ai-healthcare/516047/
3. http://m.me/techcrunch
4. https://bots4health.com/2016/11/05/new-chatbot-release/
5. https://www.facebook.com/bots4health
6. https://www.sensely.com/
7. https://woebot.io/
https://www.bnext.com.tw/article/50622/chatbot-weobot
8. https://www.your.md/
9. https://kknews.cc/zh-tw/health/8qvgype.html
10. https://www.bnext.com.tw/article/51329/woebot-ai-chatbot
11. https://www.smartm.com.tw/article/35323339cea3
12. https://www.bnext.com.tw/article/43929/chatbot-and-voicebot-can-not-be-the-cure
13. https://www.ithome.com.tw/news/113445
14. https://www.ithome.com.tw/news/113437
15. https://www.grandsys.com.tw/news/innovative-applications/902-chatbot2


中文文獻:
1. 仇瑜, & 程力. (2019). 特定领域问答系统中基于语义检索的非事实型问题研究. 北京大学学报 (自然科学版), 55(1), 55-64.
2. 王浩畅, & 李斌. (2018). 聊天机器人系统研究进展. 计算机应用与软件, 35(12), 1-6.
3. 冯升. (2016). 聊天机器人问答系统现状与发展. 机器人技术与应用, 4, 34-36.
4. 李小燕. (2015). 老人护理机器人伦理风险探析. 东北大学学报 (社会科学版), 17(6), 561-566.
5. 林孟穎. (2009). 關懷網絡的開展: 國小高年級關懷教育之行動研究. 國立臺北教育大學課程與教學研究所學位論文, 1-205.
6. 徐慧雯. (2017). 聊天機器人使用意願影響因素之研究.
7. 高怡蓁. (2018). 以聊天機器人Chatbot之媒體豐富性探討社會距離對購買意圖的影響. National Central University,
8. 黃韞臻, & 林淑惠. (2009). 大學生的生活壓力與身心健康之研究-以中部五所大學爲例. 國立虎尾科技大學學報, 28(1), 41-56.
9. 趙翊傑. (2016). 研究生生活壓力, 休閒參與對憂鬱情緒之研究. 朝陽科技大學休閒事業管理系學位論文, 1-85.


英文文獻:
1. Ahmad, F., Hogg-Johnson, S., Stewart, D. E., Skinner, H. A., Glazier, R. H., & Levinson, W. (2009). Computer-assisted screening for intimate partner violence and control: a randomized trial. Annals of internal medicine, 151(2), 93-102.
2. Al-Zubaide, H., & Issa, A. A. (2011). Ontbot: Ontology based chatbot. Paper presented at the International Symposium on Innovations in Information and Communications Technology.
3. Bakker, D., Kazantzis, N., Rickwood, D., & Rickard, N. (2016). Mental health smartphone apps: review and evidence-based recommendations for future developments. JMIR mental health, 3(1), e7.
4. Behera, B. (2016). Chappie-a semi-automatic intelligent chatbot. Write-Up.
5. Bickmore, T., Gruber, A., & Picard, R. (2005). Establishing the computer–patient working alliance in automated health behavior change interventions. Patient education and counseling, 59(1), 21-30.
6. Blake, R. L., & Vandiver, T. A. (1988). The association of health with stressful life changes, social supports, and coping. Family Practice Research Journal.
7. Comendador, B. E. V., Francisco, B. M. B., Medenilla, J. S., & Mae, S. (2015). Pharmabot: a pediatric generic medicine consultant chatbot. Journal of Automation and Control Engineering Vol, 3(2).
8. Corrigan, P. W. (2007). How clinical diagnosis might exacerbate the stigma of mental illness. Social Work, 52(1), 31-39.
9. Crabb, R. M., Cavanagh, K., Proudfoot, J., Learmonth, D., Rafie, S., & Weingardt, K. R. (2012). Is computerized cognitive‐behavioural therapy a treatment option for depression in late‐life? A systematic review. British Journal of Clinical Psychology, 51(4), 459-464.
10. Daniel, F., Matera, M., Zaccaria, V., & Dell'Orto, A. (2018). Toward truly personal chatbots: on the development of custom conversational assistants. Paper presented at the Proceedings of the 1st International Workshop on Software Engineering for Cognitive Services.
11. Donaldson, D., Prinstein, M. J., Danovsky, M., & Spirito, A. (2000). Patterns of children's coping with life stress: Implications for clinicians. American Journal of Orthopsychiatry, 70(3), 351-359.
12. Eeuwen, M. v. (2017). Mobile conversational commerce: messenger chatbots as the next interface between businesses and consumers. University of Twente,
13. Everly, G. S., & Lating, J. M. (2002). A clinical guide to the treatment of the human stress response: Springer.
14. Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104.
15. Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR mental health, 4(2), e19.
16. Fling, B. (2009). Mobile design and development: Practical concepts and techniques for creating mobile sites and Web apps: " O'Reilly Media, Inc.".
17. Graf, B., Hans, M., & Schraft, R. D. (2004). Care-O-bot II—Development of a next generation robotic home assistant. Autonomous robots, 16(2), 193-205.
18. Gratch, J., Rickel, J., André, E., Cassell, J., Petajan, E., & Badler, N. (2002). Creating interactive virtual humans: Some assembly required. IEEE Intelligent systems, 17(4), 54-63.
19. Greenberg, J. S. (2017). Comprehensive stress management: McGraw-Hill Education.
20. Gulliver, A., Griffiths, K. M., & Christensen, H. (2010). Perceived barriers and facilitators to mental health help-seeking in young people: a systematic review. BMC psychiatry, 10(1), 113.
21. Huang, Y.-T., Yang, J.-C., & Wu, Y.-C. (2008). The Development and Evaluation of English Dialogue Companion System. Paper presented at the 2008 Eighth IEEE International Conference on Advanced Learning Technologies.
22. Iftene, A., & Vanderdonckt, J. (2016). Moocbuddy: a chatbot for personalized learning with moocs. Paper presented at the RoCHI–International Conference on Human-Computer Interaction.
23. Jia, J. (2009). CSIEC: A computer assisted English learning chatbot based on textual knowledge and reasoning. Knowledge-Based Systems, 22(4), 249-255.
24. Kang, Y. (2014). Discussion on College Students’ Psychological Counseling Based on Fuzzy Definition of the Relationship between Trust and Help-seeking Willingness. Paper presented at the 3rd International Conference on Science and Social Research (ICSSR 2014).
25. Kataria, P., Rode, K., Jain, A., Dwivedi, P., & Bhingarkar, S. (2018). User adaptive chatbot for mitigating depression. International Journal of Pure and Applied Mathematics, 118(16), 349-361.
26. Kauer, S. D., Reid, S. C., Crooke, A. H. D., Khor, A., Hearps, S. J. C., Jorm, A. F., . . . Patton, G. (2012). Self-monitoring using mobile phones in the early stages of adolescent depression: randomized controlled trial. Journal of medical Internet research, 14(3), e67.
27. Kazantzis, N., Deane, F. P., Ronan, K. R., & L'Abate, L. (2005). Using homework assignments in cognitive behavior therapy: Routledge.
28. Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H. U. (2012). Twelve‐month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International journal of methods in psychiatric research, 21(3), 169-184.
29. Kethuneni, S., August, S. E., & Vales, J. I. (2009). Personal health care assistant/companion in virtual world. Paper presented at the 2009 AAAI Fall Symposium Series.
30. Kraut, R., Kiesler, S., Boneva, B., Cummings, J., Helgeson, V., & Crawford, A. (2002). Internet paradox revisited. Journal of social issues, 58(1), 49-74.
31. Lazarus, R. S. (2006). Stress and emotion: A new synthesis: Springer Publishing Company.
32. Lee, D., Oh, K.-J., & Choi, H.-J. (2017). The chatbot feels you-a counseling service using emotional response generation. Paper presented at the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp).
33. Li, Q., Xue, Y., Jia, J., & Feng, L. (2014). Helping Teenagers Relieve Psychological Pressures: A Micro-blog Based System. Paper presented at the EDBT.
34. Lin, Y. M., Lin, S. C., Wang, M. Y., & Chen, F. S. (2009). What causes the academic stress suffered by students at universities and colleges of technology. World Transactions on Engineering and Technology Education, 7(1), 77-81.
35. Lokman, A. S., Zain, J. M., Komputer, F. S., & Perisian, K. (2009). Designing a Chatbot for diabetic patients. Paper presented at the International Conference on Software Engineering & Computer Systems (ICSECS'09).
36. Machinery, C. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.
37. Madhu, D., Jain, C. N., Sebastain, E., Shaji, S., & Ajayakumar, A. (2017). A novel approach for medical assistance using trained chatbot. Paper presented at the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT).
38. Martinez, R., & Williams, C. (2010). Matching clients to CBT self-help resources. Oxford guide to low intensity CBT interventions, 113-121.
39. Mauldin, M. L. (1994). Chatterbots, tinymuds, and the turing test: Entering the loebner prize competition. Paper presented at the AAAI.
40. Mennin, D. S., Ellard, K. K., Fresco, D. M., & Gross, J. J. (2013). United we stand: Emphasizing commonalities across cognitive-behavioral therapies. Behavior therapy, 44(2), 234-248.
41. Pariat, M., Rynjah, M., Joplin, M., & Kharjana, M. (2014). Stress levels of college students: interrelationship between stressors and coping strategies. IOSR J. Humanit. Soc. Sci, 19, 40-45.
42. Piekarska, A. (2000). School stress, teachers’ abusive behaviors, and children’s coping strategies. Child Abuse & Neglect, 24(11), 1443-1449.
43. Rahman, A., Al Mamun, A., & Islam, A. (2017). Programming challenges of chatbot: Current and future prospective. Paper presented at the 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC).
44. Ranoliya, B. R., Raghuwanshi, N., & Singh, S. (2017). Chatbot for university related FAQs. Paper presented at the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI).
45. Ritterband, L., Thorndike, F., Vasquez, D., & Saylor, D. (2010). Treatment credibility and satisfaction with Internet interventions. Oxford guide to low intensity CBT interventions, 235-240.
46. Rosenfield, S. (1997). Labeling mental illness: The effects of received services and perceived stigma on life satisfaction. American Sociological Review, 660-672.
47. Satu, M. S., & Parvez, M. H. (2015). Review of integrated applications with aiml based chatbot. Paper presented at the 2015 International Conference on Computer and Information Engineering (ICCIE).
48. Su, M.-H., Wu, C.-H., Huang, K.-Y., Hong, Q.-B., & Wang, H.-M. (2017). A chatbot using LSTM-based multi-layer embedding for elderly care. Paper presented at the 2017 International Conference on Orange Technologies (ICOT).
49. Taber, J. M., Leyva, B., & Persoskie, A. (2015). Why do people avoid medical care? A qualitative study using national data. Journal of general internal medicine, 30(3), 290-297.
50. Thorne, K. J., Andrews, J. J., & Nordstokke, D. (2013). Relations among children's coping strategies and anxiety: the mediating role of coping efficacy. The Journal of general psychology, 140(3), 204-223.
51. Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test (pp. 23-65): Springer.
52. Van Manen, T. (2016). Bot or not: Dit is waarom Facebook inzet op chatbots. Marketingfacts. In.
53. Varvogli, L., & Darviri, C. (2011). Stress management techniques: evidence-based procedures that reduce stress and promote health. Health science journal, 5(2), 74.
54. Wallace, R. (1995). Artificial linguistic internet computer entity (ALICE). In.
55. Weizenbaum, J. (1966). ELIZA---a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45.
56. Wilensky, R., Chin, D. N., Luria, M., Martin, J., Mayfield, J., & Wu, D. (1988). The Berkeley UNIX consultant project. Computational Linguistics, 14(4), 35-84.
57. Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., & Zhou, J. (2016). Docchat: An information retrieval approach for chatbot engines using unstructured documents. Paper presented at the Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
58. Yang, 楊. a. Y.-L. (2018). 對話式服務應用範圍與價值之探索性研究-以臺灣Chatbot業者為例. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105453018. Retrieved from http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105453018.
59. Zamora, J. (2017). I'm Sorry, Dave, I'm Afraid I Can't Do That: Chatbot Perception and Expectations. Paper presented at the Proceedings of the 5th International Conference on Human Agent Interaction.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔