跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張晏維
研究生(外文):Yan-Wei Chang
論文名稱:鈮酸鋰電光調變器在不同偏壓情形的穆勒矩陣表示式
論文名稱(外文):A Mueller Matrix Modeling of a Lithium Niobate Electro-Optic Modulator under Different Electronic Bias Conditions
指導教授:譚昌文
指導教授(外文):Chen-Wen Tarn
口試委員:黃柏仁黃柏仁
口試委員(外文):Bohr-Ran HuangBohr-Ran Huang
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:鈮酸鋰調變器電光效應穆勒矩陣
外文關鍵詞:Lithium niobate modulatorElectro optic effectMueller matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一種推導非等向性晶體(anisotropic crystal)穆勒矩陣(Mueller Matrix)的新方法,這類晶體如鈮酸鋰(LiNbO3),經常用於電光調變器。非等向性電光晶體中的偏振光波傳播可以透過向量波方程式(vector wave equation)來描述,而晶體的介電常數張量會隨著所施加的外部電信號偏壓產生微擾的情形。利用史托克斯向量(Stokes Vector)形式表示的入射偏振光,可以使用系統概念將非等向性晶體建模為一個從向量波方程式推導出的四乘四矩陣,即為穆勒矩陣。

輸出偏振光的史托克斯向量可以經由輸入光的史托克斯向量和晶體的穆勒矩陣的矩陣乘法運算獲得。為了驗證該理論,我們將三種不同相位的偏振光入射到內部具有鈮酸鋰晶體的電光調變器中來計算出輸出光的史托克斯向量。此外,利用邦加球(Poincaré sphere)的模擬結果、晶體中的方位角和橢圓角,我們可以找出輸出光的偏振態。
This thesis proposes a novel method to derive a Mueller Matrix of an anisotropic crystal, the Lithium Niobate (LiNbO3) which is common used in electro-optic modulators. The polarized optical wave propagation in an anisotropic electro-optic crystal can be properly described by the vector wave equation with the permittivity tensor is perturbed by the applied, external electrical signal. With the incident polarized optical wave represented in the form of the Stokes vector, the anisotropic crystal can be modeled using the system concept as a four-by-four matrix which is derived from the vector wave equation and is named as a Mueller Matrix of the crystal. The Stokes vector of the output polarized light wave can be simply obtained by a matrix multiplication operation of the input light Stokes vector and the Mueller Matrix of the crystal. To verify the theory, we simulate the Stokes vector of the output light by injecting three different phases polarized light into the electro-optic modulator which has a Lithium Niobate crystal inside. Moreover, with the simulation result of the Poincaré sphere, azimuth angle and ellipse angle in crystal, we can find the polarization states of the output light.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究方法與動機 2
1.3 論文架構 3
第二章 基本理論 4
2.1 Maxwell’s Equations 4
2.2 電磁波在物質中的傳播 5
2.2.1 自由空間中的波動方程式 5
2.2.2 非等向性材料(Anisotropic material)的波動方程式 7
2.2.3 單軸晶體(Uniaxial Crystal) 8
2.3 電光效應 9
2.3.1 原理 9
2.3.2 折射率橢圓(Index Ellipsoid)方程式 10
2.3.3 鈮酸鋰(LiNbO3)中的電光效應 13
2.4 調變技術 16
第三章 偏振表示法及穆勒矩陣 20
3.1 史托克斯向量(Stokes Vector) 20
3.2 邦加球(Poincaré sphere) 23
3.3 穆勒矩陣(Mueller Matrix) 24
3.4 電光調變器的穆勒矩陣表示式 27
3.4.1 z方向偏壓調變器的穆勒矩陣 29
3.4.2 y、z方向偏壓調變器的穆勒矩陣 37
第四章 調變器系統的輸出光模擬 42
4.1 水平偏振調變 43
4.2 45度偏振調變 46
4.3 圓偏振調變 49
第五章 結論與未來展望 52
5.1 結論 52
5.2 未來展望 53
參考文獻 54
[1] C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett., vol. 25, no. 18, pp. 1355–1357, (2000).
[2] G. Yao, and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett., vol. 24, no. 8, pp. 537–539, (1999).
[3] M. R. Fernández-Ruiz, J. Huh, and J. Azaña, “Time-domain Vander-Lugt filters for in-fiber complex (amplitude and phase) optical pulse shaping,” Opt. Lett., vol. 41, no. 9, pp. 2121–2124, (2016).
[4] T. F. da Silva, C. S. Nobre, and G. P. Temporão, “Polarization-dependent loss characterization method based on optical frequency beat,”Appl. Opt., vol. 55, no. 8, pp. 1838–1843, (2016).
[5] T. A. Maldonado, Electro-optic modulators in Handbook of Optics, M. Bass, ed., McGraw Hill, 1995.
[6] A. Mabrouki, M. Gadonna, and R. L. Naour, “Polarization characterization of a Mach–Zehnder interferometer,” Appl. Opt., vol. 35, no. 19, pp. 3591-3596, (1996).
[7] C. Zhou, Q. Wang, and Z. Li, “Numerical Calculation for Mueller Matrix of a Single Particle Based on Jones Vectors,” http://dx.doi.org/10.12677/oe.2015.52005
[8] O. Arteaga, E. Garcia-Caurel, and R. Ossikovski, “Anisotropy coefficients of a Mueller matrix,” J. Opt. Soc. Am. A, vol. 28, no. 4, pp. 548-553, (2011).
[9] W. S. Bickel, and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys., vol. 53, no. 5, pp. 468-478, (1985).
[10] S. Jiao, G. Yao, and L. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt., vol. 39, no. 34, pp. 6318-6324, (2000).
[11] J. R. Mackey, NYMA, and Inc. NASA Lewis Group, “Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications,” https://ntrs.nasa.gov/search.jsp?R=20010004365 2019-01-28T11:15:28+00:00Z
[12] D. K. Cheng, Fundamentals of Engineering Electromagnetics, Pearson Education Taiwan Ed., 2015.
[13] E. Hecht, Optic 4 Edition, Adelphi University, 2002.
[14] Z. Shao, and C. Yi, “Behavior of extraordinary rays in uniaxial crystals,” Appl. Opt., vol. 33, no. 7, pp. 1209-1212, (1994).
[15] A. Yariv, and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, John Wiley Sons Inc., 1984.
[16] P. R. Hobson, Lasers and Electro-Optics: Fundamentals and Engineering 2nd Edition, by Christopher C. Davis, Contemp. Phys, (2014).
[17] L. Jin, K. Nara, K. Takizawa, and E. Kondoh, “Dispersion measurement of the electro-optic Coefficient r22 of the LiNbO3 crystal with Mueller Matrix spectropolarimetry,” Jpn. J. Appl. Phys., vol. 54, (2015).
[18] A. Yariv, Optical Electronics, 3rd ed., Holt, Rinehart and Winston, New York, 1985.
[19] N. Ortega-Quijano, and J. L. Arce-Diego, “Generalized Jones matrices for anisotropic media,” Opt. Exp., vol. 21, no. 6, pp. 6895–6900, (2013).
[20] K. Iizuka, Elements of Photonics, Volume I: In Free Space and Special Media, John Wiley & Sons, Inc., 2002.
[21] R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forró, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett., vol. 95, (2009).
[22] B. D. Stone, “Perturbations of optical systems,” J. Opt. Soc. Am. A, vol. 14, pp. 2837–2849, (1997).
[23] S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A. Browaeys, and
P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. B, vol. 21, pp. 1889–1894, (2004).
[24] Newport, “Practical Uses and Applications of Electro-Optic Modulators,” www.newport.com/practical-uses-andapplications-of-electro-optic-modulators.
[25] N. Ohmae, S. Moriwaki, and N. Mio, “High-efficiency electro-optic amplitude modulation with delayed coherent addition,” Opt. Lett., vol. 36, no. 2, pp. 238–240, (2011).
[26] Thorlabs, “Free-Space EO Modulator Lab Facts,” www.thorlabs.com/images/TabImages/Free-Space_EO_Modulator_Lab_Facts.pdf.
[27] Electro-Optical Modulation, http://d1.amobbs.com/bbs_upload782111/files_10/ourdev_280346.pdf
[28] J. Cervantes-L, D. I. Serrano-Garcia, Y. Otani, and B. Cense, “Mueller-matrix modeling and characterization of a dual-crystal electro-optic modulator,” Opt. Exp., vol. 24, no. 21, pp. 24213–24224, (2016).
[29] M. Hayman, and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A, vol. 29, no. 4, pp. 400-409, (2012).
[30] F. Flossmann, U. T. Schwarz, and M. Maier, “Stokes parameters in the unfolding of an optical vortex through a birefringent crystal,” Opt. Exp., vol. 14, no. 23, pp. 11402–11411, (2006).
[31] R. Ossikovski, J. J. Gil, and I. S. José, “Poincaré sphere mapping by Mueller matrices,” J. Opt. Soc. Am. A, vol. 30, no. 11, pp. 2291-2305, (2013).
[32] 白奇哲, “摻鉺光纖放大器的極化模態色散,”台科大碩士論文, 2016.
[33] O. A. Barriel, Mueller Matrix Polarimetry of Anisotropic Chiral Media, Universitat de Barcelona, Departament de Física Aplicada i Òptica, 2010.
[34] J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A, vol. 17, no. 2, pp. 2291-2305, (2000).
[35] S. N. Savenkov, Jones and Mueller matrices: Structure, symmetry relations and information content, Light Scattering Reviews 4, Department of Radiophysics, 2009.
[36] 陳玉凡, “2D/3D主動聲光透鏡自動立體顯示器的穆勒矩陣系統表示式,”台科大碩士論文, 2018.
[37] E. Hecht, Optic 4 Edition, Ch8 p. 383, Adelphi University, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top