跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昇
研究生(外文):Sheng Chen
論文名稱:新型電壓編程像素電路補償及用於雙向主動式有機發光二極體顯示器的感測和顯示電路設計
論文名稱(外文):Novel LTPS-TFT Pixel Circuit and Sensing Pixel Circuit Integrated with Driving Pixel Circuit for Bi-direction AMOLED Displays
指導教授:范慶麟
指導教授(外文):Ching-Lin Fan
口試委員:顏文正李志堅劉舜維
口試委員(外文):Wen-Zheng YanChih-Chien LeeShun-Wei Liu
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:99
中文關鍵詞:非晶氧化銦鎵鋅薄膜電晶體畫素電路主動式有機發光二極體畫素感測電路雙向顯示器
外文關鍵詞:amorphous-indium-gallium-zinc-oxide thin-film transistor (a-IGZO TFT)pixel circuitactive-matrix light emitting diode (AMOLED)pixel sensor circuitbi-directional displays
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
主動式有機發光二極體(AMOLED)被視為下一個世代重要的顯示技術,由於其廣視角、反應速度快、高對比、高色彩飽和度、和自發光性,近年來在市場上受到大量的矚目。而在驅動主動式有機發光二極體之畫素電路部分,薄膜電晶體扮演非常重要的角色,由於薄膜電晶體材料特性的不同,優勢與適用的顯示器尺寸也不相同。非晶矽(a-Si)技術已相當成熟,適用於大尺寸顯示器,但是其較低的載子遷移率,使其無法進行高速的操作。低溫多晶矽(LTPS)具有高載子遷移率使其可進行高速操作,但是在低溫多晶矽的薄膜電晶體製造過程中,在準分子雷射退火時會造成電性差異,會使得在相同灰階下,電流不一的情況。氧化銦鎵鋅(IGZO)有著不錯的載子遷移率,在大面積製程較均勻及製成溫度較低的優點。然而,在實際的AMOLED顯示器上,電晶體除了製程上造成電性的差異外,元件經過長時間的操作也會造成劣化。
此外,互動式顯示器為一種結合顯示器與光感測器之快速發展的應用型顯示器,在傳統互動式螢幕的影像輸入及輸出是藉由獨立的顯示器搭配額外的攝影機所完成,環境光源經由攝影機內的感光元件轉換成電子訊號,經過影像處理之後光感測器所接受到的畫面可以直接輸入至顯示螢幕上,因此互動式螢幕具有即時顯示的優點。傳統互動式螢幕的顯示裝置與感測裝置無法整合的原因之一,在於顯示器與感測器所使用的基板不同,顯示器所使用的電子元件及基板為薄膜電晶體及玻璃基板,攝影機內部的感光元件使用的電子元件及基板是光電二極體搭配互補式金屬氧化物半導體(CMOS)放大電路及矽基板,但隨著 Seung et al.於2012 年在 Adv. Mater.期刊中提出使用薄膜電晶體製作光感測器 (Photo-TFT)的概念提出之後,鏡頭的感光元件將有機會與顯示器的薄膜電晶體一起製作在玻璃基板上。
因此,第一個電路畫素電路是以低溫多晶矽組成的4T2C畫素電路,其功能除了補償驅動電晶體的臨界電壓變化外,同時補償因製程或長時間操作造成的載子遷移率mobility的變化。值得一提的是,若OLED在發光階段以外的操作階段發光,會造成閃爍,導致畫面的不均勻。此電路只在發光階段進行發光,避免畫免閃爍。然而,研究顯示長時間讓OLED處於正偏壓下,會讓OLED的發光效率降低,本電路也藉由在發光階段以外的時間給予負偏壓補償。模擬結果顯示,在驅動薄膜電晶體的臨界電壓飄移正負0.33V時,電路的平均錯誤率僅為3.2%。
第二個電路為使用氧化銦鎵鋅(IGZO)的7T2C顯示感測整合型畫素電路,利用AIM-SPICE進行擬合證實了此電路的可行性,並藉由電路設計,達到補償驅動薄膜電晶體之臨界電壓飄移、載子遷移率飄移、IR Drop、V_(TH_OLED) 飄移之效果。模擬結果顯示,在驅動薄膜電晶體的臨界電壓飄移正負1V時,電路的平均錯誤率僅4.3%。在載子遷移率飄移±30%時,電路的平均錯誤率僅2.9%。
Active Organic Light Emitting Diode (AMOLED) are regarded as important display technologies for the next generation. Due to their wide viewing angle, fast response, high contrast, high color saturation, and self-luminescence, it has received a lot of market in recent years.
Thin film transistors play a very important role in driving the pixel circuits of active organic light-emitting diode. Due to the different material properties of thin-film transistors, the advantages are different from the applicable display sizes. Amorphous germanium (a-Si) technology is quite mature and suitable for large-size displays, but its low carrier mobility makes it impossible to operate at high speeds. Low-temperature polycrystalline germanium (LTPS) has high carrier mobility for high-speed operation, but in the fabrication of low-temperature polycrystalline thin-film transistors, electrical differences occur during excimer laser annealing, which results in the same gray level. The current is not the same. Indium gallium zinc oxide (IGZO) has a good carrier mobility, a relatively uniform process over a large area and a low temperature. However, on an actual AMOLED display, in addition to the electrical difference in the process of the transistor, the component may be deteriorated after a long period of operation.
In addition, the interactive display is a fast-developing application display that combines a display and a light sensor. The image input and output of the traditional interactive screen is performed by a separate display with an additional camera, and the ambient light source is passed through the camera. The photosensitive element is converted into an electronic signal, and after the image processing, the image received by the optical sensor can be directly input to the display screen, so the interactive screen has the advantage of instant display. One of the reasons why the display device and the sensing device of the conventional interactive screen cannot be integrated is that the display and the substrate used by the sensor are different. The electronic components and substrates used in the display are thin film transistors and glass substrates, and the inside of the camera is sensitive. The electronic components and substrates used in the components are photodiodes with complementary metal oxide semiconductor (CMOS) amplifying circuits and germanium substrates, but the use of thin film transistors is proposed by Seung et al. 2012 in Adv. Mater. After the concept of photosensors (Photo-TFT) is proposed, the photosensitive elements of the lens will have the opportunity to be fabricated on the glass substrate together with the thin film transistor of the display.
Therefore, the first circuit pixel circuit is a 4T2C pixel circuit composed of low temperature polysilicon. Its function not only compensates for the critical voltage change of the driving transistor, but also compensates for the change of carrier mobility caused by process or long time operation. . It is worth mentioning that if the OLED emits light during the operation phase other than the light-emitting phase, it will cause flicker, resulting in unevenness of the picture. This circuit only emits light during the illumination phase, avoiding flickering. However, studies have shown that OLEDs are under positive bias for a long period of time, which reduces the luminous efficiency of the OLED. This circuit also compensates for negative bias by time outside the illuminating phase. The simulation results show that the average error rate of the circuit is only 3.2% when the threshold voltage drift of the driving thin film transistor is plus or minus 0.33V.
The second circuit is a 7T2C display sensing integrated pixel circuit using indium gallium zinc oxide (IGZO). The fitting of AIM-SPICE confirms the feasibility of this circuit and compensates for the driving film by circuit design. The effect of the critical voltage drift of the crystal, carrier mobility drift, IR Drop, V_(TH_OLED) drift. The simulation results show that the average error rate of the circuit is only 4.3% when the threshold voltage of the driving thin film transistor is shifted by plus or minus 1V. When the carrier mobility drifts by ±30%, the average error rate of the circuit is only 2.9%.
Acknowledgement I
Abstract (in Chinese) II
Abstract IV
Contents VII
List of Figures XI
List of Tables XV
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 AMOLED Structure and Operation 3
1.2.1 Mechanism of OLED Emission 5
1.2.2 PMOLED 7
1.2.3 AMOLED 7
1.3 Three-Dimension Displays 9
1.3.1 Overview of 3D Technology 9
1.3.2 Stereoscopic Displays 10
1.3.3 Emission Driving Scheme 11
1.4 Image Sensors and Operation 13
1.4.1 Charge-Coupled Device (CCD) Image Sensors 14
1.4.2 Photodiodes 16
1.4.3 Phototransistors 17
1.4.4 Conventional Sensor Circuit 20
1.5 Interactive Displays 21
1.6 Motivations 22
Chapter 2 AMOLED Pixel Circuit Driving Method 24
2.1 Driving Device 24
2.1.1 a-Si TFT 24
2.1.2 LTPS TFT 25
2.1.3 a-IGZO TFT 25
2.2 Compensation for AMOLED Displays 26
2.2.1 Threshold Voltage 28
2.2.2 Mobility 30
2.2.3 OLED Degradation 31
2.2.4 Voltage Drop of the Power Line 33
2.3 TFT Model Fitting Flow 34
Chapter 3 A novel voltage-programmed LTPS-TFT Pixel Circuit Compensate for OLED Luminance decay with reverse-bias for AMOLED Displays 38
3.1 Introduction 38
3.2 Circuit Scheme and Operation 39
3.3 Simulation Results and Discussion 44
3.4 Summary 50
Chapter 4 A Novel IGZO Integrated Sensing and Display Pixel for bi-directional AMOLED Displays 52
4.1 Introduction 52
4.2 Circuit Scheme and Operation 54
4.2.1 Display part 56
4.2.2 Sensing Part 58
4.3 Simulation Results and Discussion 60
4.4 Summary 68
Chapter 5 Conclusions and Future Work 69
5.1 Conclusions 69
5.2 Future Work 71
REFERENCE 72
[1] G. Shapiro, "Consumer electronics association's five technology trends to watch:
exploring new tech that will impact our lives, " IEEE Consumer Electronics Magazine, vol. 2, no. 1, pp. 32–35, Jan. 2013.
[2] R. Mertens, The OLED Handbook A Guide to OLED Technology, Industry & Market, 2013.
[3] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
[4] A. Ko¨hler and H. Ba¨ssler, Electronic Processes in Organic Semiconductors: An Introduction, John Wiley & Sons, 2015.
[5] F. Templier, OLED Microdisplays, 2014, pp. 124-125.
[6] Brian Bowers, Sir Charles Wheatstone FRS: 1802–1875 (2nd ed.), IET, 2001, pp. 207–208. ISBN 978-0-85296-103-2.
[7] David Sir Brewster, The Stereoscope; its History, Theory, and Construction, with its Application to the fine and useful Arts and to Education: With fifty wood Engravings, 1856.
[8] N. S. Holliman, N. A. Dodgson, G. E. Favalora and L. Pockett, "Three- Dimensional Displays: A Review and Applications Analysis," IEEE Transactions on Broadcasting, vol.57, no. 2, pp. 362-371, Apr 2011.
[9] H. Urey, K. V. Chellappan, E. Erden and P. Surman, "State of the Art in Stereoscopic and Autostereoscopic Displays," Proceedings of the IEEE, vol. 99, no. 4, pp. 540-555, Apr 2011.
[10] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen and B. Lee, "Three-dimensional display technologies of recent interest Principles, status, and issues," Applied Optics, vol. 50, no. 34, pp. 87-115, 2011.
[11] E. Lueder, 3D Displays, 2012, pp. 22-25.
[12] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. D. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley and S. S. Kim, "Novel Simultaneous Emission Driving Scheme for Crosstalk-free 3D AMOLED TV," Society for Information Display, vol. 41, no. 1, pp. 758-761, 2010.
[13] W. S. Boyle and G. E. Smith, "Charge coupled semiconductor devices, "The Bell System Technical Journal, vol. 49, pp. 587-593, Apr 1970.
[14] G. F. Amelio, M. F. Tompsett and G. E. Smith, "Experimental verification of the charge coupled device concept," The Bell System Technical Journal, vol. 49, pp. 593-600, Apr 1970.
[15] https://3smarket-info.blogspot.com/2015/08/cmos-ccd.html
[16] X. Liu, X. Yang, M. Liu, Z. Tao, Q. Dai, L Wei, C. Li, X. Zhang, B. Wang and A. Nathan," Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface," Applied Physics Letters, vol. 104, pp. 113501, Mar 2014.
[17] P. Noble, "Self-scanned silicon image detector arrays," IEEE Transactions on Electron Devices, vol. 15, pp. 202-209, Apr 1968.
[18] L. E. Antonuk, J. Boudry, C. W. Kim, M. Longo, E. J. Morton, J. Yorkston and R. A. Street, “Signal, noise, and readout considerations in the development of amorphous silicon photodiode arrays for radiotherapy and diagnostic x-ray imaging.” Proc SPIE 1443, pp. 108-119, 1991.
[19] Y. Nakanishi, T. Fujii, K. Kiatjima, Y. Sato and H Koike, “Vision-Based Face Tracking System for Large Displays.” in International Conference on Ubiquitous Computing. LNCS, pp. 152-159, 2002.
[20] J. Naber, C. Krupitzer and C. Becker, “Transferring an Interactive Display Service to the Virtual Reality.” in IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1-8, 2017.
[21] C. Großmann, M. Pertenaïs, G. Notni and A. Tünnermann, “A Novel Concept of a Vein Viewer Based on a Bidirectional OLED Microdisplay.” Journal of the Society for Information Display, vol. 44, pp. 142-145, Jul 2013.
[22] T. N. Ng, I. Fujieda, R. A. Street and J. Veres, “Persistent photoconductivity effects in printed n-channel organic transistors.” J. Appl. Phys., 113, 094506, 2013.
[23] B. Richter, U. Vogel, R.Herold, K. Fehse, S. Brenner, L. Kroker and J. Baumgarten,” Bidirectional OLED Microdisplay: Combining Display and Image Sensor Functionality into a Monolithic CMOS Chip.” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 314-316, 2011.
[24] E. Lee, A. Benayad, T. Shin, H. Lee, D. S. Ko, T. S. Kim, K. S. Son, M, Ryu, S, Jeon and G. S. Park,” Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application.” Scientific Reports, vol. 4, p. 4948, 2014.
[25] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu and J. C. Sturm, "The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays." International Electron Devices Meeting Technical Digest, pp. 875-878, 1998.
[26] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices." IEEE Journal of Selected Topics in Quantum Electronics., vol. 4, no. 1, pp. 83-99, 1998.
[27] S. Ono, K. Miwa, K. Maekawa and T. Tsujimura, "VTH Compensation Circuit for
AMOLED Displays Composed of Two TFTs and One Capacitor." IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 462-467, 2007.
[28] K.Nomura,H.Ohta,A.Takagi,T.Kamiya,M.Hirano,andH.Hoson“Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, 2004.
[29] J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, “Transparent amorphous oxide semiconductor thin film transistor. ”Electron. Mater. Lett., vol. 7, pp. 1–11, 2011.
[30] T.-C.Fung, K.Abe,H. Kumomi,and J.Kanicki, ”Electricalinstability of RF sputter amorphous In-Ga-Zn-O thin-film transistors, ” J. Display Technol., vol. 5, no. 12, pp. 452–461, Dec. 2009.
[31] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, "Comparison of a-Si and Poly- Si for AMOLED displays," Society for Information Display, vol. 12, no. 4, pp. 367-371, 2004.
[32] Y. K. Lee, K. M. Kim, J. I. Ryu and D. J. Choo, "A comparison between a-Si : H TFT and poly-Si TFT for a pixel in AMOLED," Journal- Korean Physical Society, vol. 39, pp.S291-S295, 2001.
[33] S. W. Lee and S. K. Joo, "Low temperature poly-si thin-film transistor fabrication by metal-induced lateral crystallization," IEEE Electron Device Letters, vol. 17, no. 4, pp. 160-162, 1996.
[34] E. Fortunato, P. Barquinha and R. Martins, "Oxide Semiconductor Thin-Film Transistors a Review of Recent Advances," Advanced Materials, vol. 24, no. 22, pp. 2945-2986, May 2012.
[35] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphousoxide semiconductors for high-performance flexible thin-film transistors," Japanese Journal of Applied Physics, vol. 45, no. 5 B, pp. 4303-4308, May 2006.
[36] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin film transistors," Science and Technology of Advanced Materials, vol. 11, no. 4, Aug 2010.
[37] J. H. Lee, J. H. Kim and M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," IEEE Electron Device Letters, vol. 26, no. 12, pp. 897-899, Dec 2005.
[38] Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," IEEE/OSA Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec 2005.
[39] R. M. A. Dawson and M. G. Kane, "Pursuit of active matrix organic light emitting diode displays," in SID Tech. Dig., pp. 372–375, 2001.
[40] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in Poly-Si TFTs," IEEE Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct 2004.
[41] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
[42] Y. Morimoto, T. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, "Influence of grain boundaries and intragrain defects on the performance of poly-si thin film transistors. " Journal of the Electrochemical Society, vol. 144, no. 7, 1997.
[43] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
[44] H. Jung, Y. Kim, Y. Kim, C. Chen, J. Kanicki and H. Lee, "a-IGZO TFT Based Pixel Circuits for AM-OLED Displays," Society for Information Display, vol. 3, no. 1, pp. 1097-1100, Jun 2012.
[45] J. Y. Kwon, D. J. Lee, and K. B. Kim, "Transparent amorphous oxide semiconductor thin film transistor," Electronic Materials Letters, vol. 7, pp. 1-11, 2011.
[46] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "A new current scaling pixel circuit for AMOLED," IEEE Electron Device Letters, vol. 25, no. 5, pp. 280-282, May 2004.
[47] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha and M. K. Han, "A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode," IEEE Electron Device Letters, vol. 27, no. 10, pp. 830-833, 2006.
[48] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "A new current scaling pixel circuit for AMOLED," IEEE Electron Device Letters, vol. 25, no. 5, pp. 280-282, May 2004.
[49] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha and M. K. Han, "A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode," IEEE Electron Device Letters, vol. 27, no. 10, pp. 830-833, 2006.
[50] J. Y. Jeon, Y. J. Jeon, Y. S. Son and G. H. Cho, "A direct fast feedback current driver using an inverting amplifier for high-quality AMOLED displays, "IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 59, no. 7, pp. 414-417, Jul 2012.
[51] C. L. Lin, W. Y. Chang, C. C. Hung and C. D. Tu, "LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display," IEEE Electron Device Letters, vol. 33, no. 5, pp. 700-702, May 2012.
[52] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang and H. C. Chang, "New pixel circuit
compensating poly-si TFT threshold-voltage shift for a driving AMOLED," Journal of the Korean Physical Society, vol. 55, no. 4, pp. 1185-1189, Apr 2010.
[53] C. L. Fan, F. P. Tseng, H. L. Lai, B. J. Sun, K. C. Chao and Y. C. Chen, "A novel LTPS TFT pixel circuit to compensate the electronic degradation for active-matrix organic light emitting diode displays," International Journal of Photoenergy, 2013.
[54] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai and B. R. Huang, "Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays," Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
[55] C. S. Chiang, J. Kanicki and K. Takechi, "Electrical Instability of Hydrogenated Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal Displays, "Japanese Journal of Applied Physics, vol. 37, no. 11, pp. 4704-4710, 1998.
[56] M. J. Powell, C. Van Berkel and J. R. Hughes, "Time and temperature dependence of instability mechanisms in amorphous silicon thin‐film transistors," Applied Physics Letters, vol. 54, no. 14, pp. 1323-1325, Apr 1989.
[57] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold Voltage Shift in a-Si:H TFTs from a Probabilistic Analysis of Carrier Population
Dynamics," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2306-2311, Aug 2006.
[58] T. Tanabe, S. Amano, H. Miyake, A. Suzuki, R. Komatsu, J. Koyama, S. Yamazaki, K. Okazaki, M. Katayama, H. Matsukizono, Y. Kanzaki and T. Matsuo, "New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs, " in SID Tech. Dig., vol. 43, pp. 88-91, Jun 2012.
[59] Y. Sohn, G. Moon, K. Choi, Y. Kim and K. Park, "Effects of TFT mobility variation in the threshold voltage compensation circuit of the OLED display, "Journal of Information Display, vol. 18, no. 1, pp. 25-30, 2017.
[60] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai and M. H. Cheng, "New Voltage-Programmed AMOLED Pixel Circuit to Compensate for Nonuniform Electrical Characteristics of LTPS TFTs and Voltage Drop in Power Line, "IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 2454-2458, Jul 2014.
[61] B. Geffroy, P. le Roy and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polymer International, vol. 55, no. 6, pp.572-582, Jun 2006.
[62] H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor and C. Xu, "Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices," Science, vol. 283, pp. 1900-1902, Mar 1999.
[63] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang and J. Shi, "Degradation mechanisms in organic light emitting diodes," Synthetic Metals, vols. 111-112, pp. 233-236, Jun 2000.
[64] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz and C. Mayr, "Device efficiency of organic light-emitting diodes Progress by improved light outcoupling," physica status solidi (a), vol. 210, no. 1, pp. 44-65, Sep 2012.
[65] D. Zou, M. Yahiro and T. Tsutsui, "Study on the degradation mechanism of organic light-emitting diodes (OLEDs)," Synthetic Metals, vol. 91, no. 1-3, pp. 191-193, 1997.
[66] C. L. Lin, K. W. Chou, C. C. Hung and C. D. Tu, "Lifetime Amelioration for an AMOLED Pixel Circuit by Using a Novel AC Driving Scheme," IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2652-2659, Aug 2011.
[67] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Electron Devices Society, vol. 25, no. 11, pp. 728-730, Nov 2004.
[68] J. P. Lee, H. S. Jeon, D. S. Moon and B. S. Bae, "Threshold voltage and IR drop compensation of an AMOLED pixel circuit without a VDD Line," IEEE Electron Devices Society, vol. 35, no. 1, pp. 72-74, Nov 2013.
[69] C. L. Fan, M. C. Shang, W. C. Lin, H. C. Chang, K. C. Chao and B. L. Guo, "LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays," Advances in Materials Science and Engineering, May 2012.
[70] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, " Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display," IEEE Transactions on Electron Devices, vol. 46, no. 12, pp. 2282-2288, Dec 1999.
[71] G. R. Chaji and A. Nathan, " Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays, " IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1095-1100, May 2007.
[72] Y. Kim, Y. Kim, and H. Lee, " A novel p-type LTPS TFT pixel circuit compensating for threshold voltage and mobility variations," Journal of Display Technology, vol. 10, pp. 995–999, Dec. 2014.
[73] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao and J. B. Peng, "An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED," Journal of Display Technology, vol. 9, no. 7, pp. 572-576, Jul 2013.
[74] Y. Kim, Y. Kim, and H. Lee, "A Novel p-Type LTPS TFT Pixel Circuit Compensating for Threshold Voltage and Mobility Variations," Journal of Display Technology, vol. 10, pp. 995-1000, Jun. 2014.
[75] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai and B. R. Huang, "Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays," Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
[76] C. L. Lin, C. C. Hung, P. Y. Kuo and M. H. Cheng, "New LTPS Pixel Circuit with AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays," Journal of Display Technology, vol. 8, no. 12, pp. 681-683, Dec 2012.
[77] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M.Hirano and H. Hosono, "Roomtemperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[78] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim and S. S. Kim,” Amorphous-oxide TFT backplane for large-sized AMOLED TVs.” Journal of the Society for Information Display, vol. 19, pp. 16-20, 2011.
[79] A. Nathan, S. Lee, S. Jeon and J. Robertson,” Amorphous Oxide Semiconductor TFTs for Displays and Imaging,” Journal of Display Technology, vol. 10, no. 11, pp. 917-926, Nov 2014.
[80] S. Lee, S. Jeon, R. Chaji and A. Nathan,” Transparent Semiconducting Oxide Technology for Touch Free Interactive Flexible Displays,” Proceedings of the IEEE, vol. 103, no. 4, pp. 644-664, Apr 2015.
[81] Y. J. Tak, D. J. Kim, W. G. Kim, J. H. Lee, S. J. Kim, J. H. Kim and H. J. Kim,” Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In−Ga−Zn−O and CH3NH3PbI3 Films,” ACS Applied Materials & Interfaces, vol. 10, pp. 12854-12861, Mar 2018.
[82] B. H. Kang, W. G. Kim, J. Chung, J. H. Lee and H. J. Kim,” Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection,” ACS Applied Materials & Interfaces, vol. 10, pp. 7223-7230, Feb 2018.
[83] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson and K. Kim,” Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Materials, vol. 11, pp. 301-305, 2012.
[84] S. Jeon, S. E. Ahn, I. Song, Y. Jeon, Y. Kim, S. Kim, H. Choi, H. Kim, E. Lee, S. Lee, A. Nathan, J. Robertson, C. Kim, U. I. Chung, I. Yoo and K. Kim,” Dual Gate Photo-Thin Film Transistor with High Photoconductive Gain for High Reliability, and Low Noise Flat Panel Transparent Imager.” in IEDM, pp. 14.3.1-14.3.4, 2011.
[85] X. Liu, Z. Tao, W. Kuang, Q. Huang, Q. Li, J. Chen and W. Lei,” Dual-Gate Phototransistor with Perovskite Quantum Dots-PMMA Photosensing Nanocomposite Insulator.” IEEE Electron Device Letters, vol. 38, no. 9, Jul 2017.
[86] J. Yang, H. Kwak, Y. Lee, Y. Kang, M. Cho, J. H. Cho, Y. Kim, S. Jeong, S. Park, H. Lee and H. Kim,” MoS2−InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity,” ACS Applied Materials & Interfaces, vol. 8, pp. 8576-8582, Mar 2016.
[87] Jixiang Wu, Shuiping Yi, Congwei Liao, Xinxin Huo, Ying Wang, Shengdong Zhang,”New AMOLED Pixel Circuit to Compensate Characteristics Variations of LTPS TFTs and Voltage Drop,” IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2018
[88] Jixiang Wu, Ying Wang, Xinxin Huo, Shuiping Yi, Congwei Liao, Min Zhang, Shengdong Zhang,” An AMOLED LTPS-TFT Pixel Circuit Using Mirror Structure to Compensate Vth Variation and Voltage Drop,” 25th International Workshop on Active-Matrix Flatpanel Displays and Devices, AM-FPD 2018
[89] C. C. Hsu, C. M. Lu, P. C. Lai, P. Chen, and C. L. Lin, "Pixel Circuit with External Current Source to Achieve Fast Compensation for Variations of LTPS TFTs for AMOLED Displays," Active-Matrix Flatpanel Displays and Devices (AM-FPD '17), pp. 147-150, Aug. 2017
[90] Ming Yang Deng, Yen Ting Liu, Chun Ming Lu, Chih-Lung Lin, " New 3T2C LTPS pixel circuit compensate for threshold voltage variation for AMOLED displays,” 23rd International Display Workshops in conjunction with Asia Display, pp. 941-943, IDW/AD 2016
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊