|
[1] E. Ahmed, M. Jones, T. K. Marks, An improved deep learning architecture for person re-identification, IEEE Conference on Computer Vision and Pattern Recognition (2015) 3908–3916.
[2] X. Liu, W. Liu, T. Mei, H. Ma, A deep learning-based approach to progressive vehicle re-identification for urban surveillance, European Conference on Computer Vision (2016) 869–884.
[3] Y. Shen, T. Xiao, H. Li, S. Yi, X. Wang, Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals, IEEE International Conference on Computer Vision (2017) 1900–1909.
[4] Y. Tian, P. Luo, X. Wang, X. Tang, Pedestrian detection aided by deep learning semantic tasks, IEEE Conference on Computer Vision and Pattern Recognition (2015) 5079–5087.
[5] K. Kang, X. Wang, Fully convolutional neural networks for crowd segmentation, arXiv preprint arXiv:1411.4464 (2014).
[6] BBC News, CCTV: Too many cameras useless, warns surveillance watchdog Tony Porter (2015), http://www.bbc.com/news/uk-30978995, Accessed: 2018-08-21.
[7] K. Simonyan, A. Zisserman, Very deep convolutional networks for large scale image recognition, International Conference on Learning Representations (2015).
[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, IEEE Conference on Computer Vision and Pattern Recognition (2015) 1–9.
[9] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni tion, IEEE Conference on Computer Vision and Pattern Recognition (2016) 770–778.
[10] D.-Q. Gao, An Effective Dynamic Convolutional Neural Network for Surveillance Video (2018), https://hdl.handle.net/11296/2aqdrh.
[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, A. C. Berg, Ssd: single shot multibox detector, European Conference on Computer Vision (2016) 21–37.
[12] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding, International Conference on Learning Representations (2016).
[13] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization and training of neural networks for efficient integer-arithmetic-only inference, IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018) 2704–2713.
[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, W. J. Dally, Eie: Efficient inference engine on compressed deep neural network, Annual ACM/IEEE International Symposium on Computer Architecture (2016) 243–254.
[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, O. Temam, Dadiannao: A machine-learning supercomputer, Annual IEEE/ACM International Symposium on Microarchitecture (2014) 609–622.
[16] J. Wu, C. Leng, Y. Wang, Q. Hu, J. Cheng, Quantization and training of neural networks for efficient integer-arithmetic-only inference, IEEE Conference on Computer Vision and Pattern Recognition (2016) 4820–4828.
[17] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor net: Imagenet classification using binary convolutional neural networks, European Conference on Computer Vision (2016) 525–542.
[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. W. M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).
[19] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018) 6848–6856.
[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, IEEE conference on Computer Vision and Pattern Recognition (2016) 2818–2826.
[21] C. Szegedy, S. Ioffe, V. Vanhoucke, Inception-v4, inception-resnet and the impact of residual connections on learning, AAAI Conference on Artificial Intelligence (2017).
[22] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep convolutional neural networks for fast and low power mobile applications, International Conference on Learning Representations (2016).
[23] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size, arXiv preprint arXiv:1602.07360 (2016).
[24] S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural networks, ACM Journal on Emerging Technologies in Computing Systems 13 (3) (2017) 32.
[25] A. Polyak, L. Wolf, Channel-level acceleration of deep face representations, IEEE Access 3 (2015) 2163–2175.
[26] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for efficient neural networks, Advances in Neural Information Processing Systems (2015) 1135–1143.
[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient convnet, International Conference on Learning Representations (2017).
[28] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks, IEEE International Conference on Computer Vision (2017) 1389–1397.
[29] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through network slimming, IEEE International Conference on Computer Vision (2017) 2736–2744.
[30] T.-J. Yang, Y.-H. Chen, V. Sze, Designing energy-efficient convolutional neural networks using energy-aware pruning, IEEE Conference on Computer Vision and Pattern Recognition (2017) 5687–5695.
[31] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics 36 (4) (1980) 193-202.
[32] H. Liu, X. Hou, Moving detection research of background frame difference based on gaussian model, International Conference on Computer Science and Service System (2012) 258–261.
[33] Available: https://github.com/weiliu89/caffe/tree/ssd.
[34] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick, Microsoft coco: common objects in context, European conference on computer vision (2014) 740–755.
[35] M. Everingham, L. Gool, C. K. Williams, J. Winn, A. Zisserman, The pascal visual object classes (voc) challenge, International Journal of Computer Vision 88 (2) (2010) 303–338.
[36] J. Ferryman, A.-L. Ellis, Performance evaluation of crowd image analysis using the pets2009 dataset, Pattern Recognition Letters 44 (2014) 3–15.
[37] E. Maggio, E. Piccardo, C. Regazzoni, A. Cavallaro, Particle phd filter for multi-target visual tracking, IEEE International Conference on Acoustics, Speech and Signal Processing 1 (2007) I–1101.
[38] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee, J. K. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-Chowdhury, , M. Desai, A large-scale benchmark dataset for event recognition in surveillance video, IEEE Conference on Computer Vision and Pattern Recognition (2011) 3153–3160.
|