# 臺灣博碩士論文加值系統

(44.222.82.133) 您好！臺灣時間：2024/09/21 02:39

:::

### 詳目顯示

:

• 被引用:0
• 點閱:235
• 評分:
• 下載:3
• 書目收藏:0
 本論文實現變頻三角形電流模式圖騰柱無橋式功率因數修正器。在一個輸入電壓週期內，皆可實現零電壓切換。本文提出一種不需外部零電流偵測電路的三角形電流模式控制。利用平均電流控制法中的平均電流命令、輸入電壓、輸出電壓及電感等參數，計算可達零電壓切換的切換頻率。利用PSIM電路模擬軟體，驗證本文所提出控制方法之可行性，最終實現變頻範圍60 kHz~180 kHz、輸入電壓230 Vrms、輸出電壓400 V、輸出功率800 W，最高效率可達98.02%的圖騰柱無橋式功率因數修正器。關鍵字：三角形電流模式、零電壓切換、圖騰柱無橋功率因數修正器、平均電流控制法、零電流偵測電路
 This thesis presents a triangular current mode totem-pole PFC rectifier with variable frequency. It can achievd ZVS over the full input voltage range. This thesis proposes a triangular current-mode control without an external zero current detection circuit. In this thesis, average current-mode control is used to achived high power factor. The period of the duty cycle is calculated using the average current reference, input voltage, and output voltage. PSIM simulation is utilized to verify the feasibility of the proposed control method. Finally, the 800-W bridgeless TPPFC with the proposed control is implemented with the switch frequency around 60 kHz-180kHz, an input voltage of 230 Vrms, and an output voltage of 400 V. The maximum experimental efficiency is 98.02%.Keywords: Triangular Current Mode, ZVS, Totem-pole PFC, average current control, zero current detection circuit
 摘要 iAbstract ii誌謝 iii目錄 v圖索引 vii表索引 ix第一章 緒論 11.1 研究動機與目的 11.2 論文內容大綱 4第二章 圖騰柱無橋式功率因數修正器分析 52.1 圖騰柱無橋式功率因數修正器電路架構與動作原理 52.2 臨界導通模式動作區間分析 72.2.1 第一區間(t0≦t
 [1] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei and M. Mu, “Application of GaN devices for 1 kW server power supply with integrated magnetics,” CPSS Transactions on Power Electronics and Applications, vol. 1, no. 1, pp. 3-12, Dec. 2016[2] 80 PLUS Test Protocol, Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies [Online]. Available:https://plugloadsolutions.com/docs/collatrl/print/Generalized_Internal_Power_Supply_Efficiency_Test_Protocol_R6.7.pdf[3] ENERGY STAR certified server [Online].Available:https://www.energystar.gov/products/office_equipment/enterprise_servers/key_product_criteria[4] Wikipedia IEC 61000-3-2 [Online].Available:https://en.wikipedia.org/wiki/IEC_61000-3-2[5] Electromagnetic Compatibility Part 3: Limits—Section 2: Limits for Harmonic Currents Emissions (equipment input current_16 A per phase), IEC 1000-3-2, 1995.[6] H. S. Nair and N. Lakshminarasamma, "Challenges in achieving high performance in boost PFC converter," 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, 2017, pp. 1-6.[7] X. Lu, Y. Xie, L. Cheng, Z. Wang and C. Gui, "Semi-bridgeless boost PFC rectifier for wide voltage input range based on voltage feed-forward control," Proceedings of The 7th International Power Electronics and Motion Control Conference, Harbin, 2012, pp. 1894-1899.[8] W. Hu, Y. Kang, X. Wang and X. Zhou, "Novel zero-voltage transition semi bridgeless boost PFC converter with soft switching auxiliary switch," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 2707-2712.[9] L. Sudheer, G. Kanimozhi and V. T. Sreedevi, "Integrator controlled semi-bridgelesss PFC boost converter," 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, 2015, pp. 1-6.[10] L. Huber, Y. Jang and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.[11] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2015, pp. 1-8.[12] X. Gong, G. Wang and M. Bhardwaj, "6.6kW Three-Phase Interleaved Totem Pole PFC Design with 98.9% Peak Efficiency for HEV/EV Onboard Charger," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 2029-2034.[13] K. Zhu, M. O'Grady, J. Dodge, J. Bendel and J. Hostetler, "1.5 kW single phase CCM totem-pole PFC using 650V SiC cascodes," 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, 2016, pp. 90-94.[14] Q. Huang, R. Yu, A. Q. Huang and W. Yu, "Adaptive zero-voltage-switching control and hybrid current control for high efficiency GaN-based MHz Totem-pole PFC rectifier," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 1763-1770.[15] F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.[16] Z. Liu, X. Huang, M. Mu, Y. Yang, F. C. Lee, and Q. Li, “Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 611-616.[17] C. Marxgut, J. Biela and J. W. Kolar, "Interleaved Triangular Current Mode (TCM) resonant transition, single phase PFC rectifier with high efficiency and high power density," The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 1725-1732.[18] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, “Design of GaN MHz totem-pole PFC rectifier,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, Sept. 2016, pp. 799-807.[19] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 108-115, Feb. 2005.[20] Z. Liu, Z. Huang, F. C. Lee, Q. Li and Y. Yang, "Operation analysis of digital control based MHz totem-pole PFC with GaN device," 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, 2015, pp. 281-286.[21] J. Kim, H. Youn and G. Moon, "A Digitally Controlled Critical Mode Boost Power Factor Corrector With Optimized Additional On Time and Reduced Circulating Losses," in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3447-3456, June 2015.[22] 陳明正，圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略，國立台灣科技大學電子工程系博士論文，2018 年。[23] Texas Instruments, TMS320F2804x Piccolo™ Microcontrollers, Data Sheet, Dec. 2017.[24] TDK, Ferrite Cores for Switching Power Supplies, 2014.[25] GaN Systems, GS66516B, Data Sheet, 2019.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略 2 箝位開關三角形電流模式降壓式轉換器分析與設計

 無相關期刊

 1 具電流預測控制之圖騰柱無橋式功率因數修正器研製 2 超高功率密度LLC諧振式轉換器之新型半圈式平板變壓器設計與研製 3 數位控制碳化矽圖騰柱無橋式功率因數修正器 4 三相Y-Δ接諧振轉換器之分析與研製 5 採用SiC元件12 kW 單相功率因數修正器之研製 6 應用於直流微電網之三相三階式串聯-串聯 諧振雙向直流轉換器 7 具耦合電感單輸入多輸出之降壓型轉換器研製 8 低輸出電流漣波之降壓型轉換器分析與研製 9 具強健型下垂控制三相三階換流器並聯系統研製 10 具有氮化鎵功率元件之圖騰柱功率因數修正器的研製 11 具寬範圍輸出電壓之全橋轉換器研製 12 應用於微電網多階層隔離型雙向直流-直流系統研製 13 使用寬能隙元件之多階諧振式 雙向直流轉換器 14 扁形化之低壓輸入寬範圍輸出脈衝轉換器研製 15 全橋相移轉換器同步整流開關之壓降式緩振電路設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室