|
[1] Y. Takai, M. Fukuchi, R. Kinoshita, C. Matsui, and K. Takeuchi, “Analysis on heterogeneous ssd configuration with quadruple-level cell (qlc) nand flash memory,” in 2019 IEEE 11th International Memory Workshop (IMW), May 2019, pp. 1–4. [2] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai, “Flash correct-and-refresh: Retention-aware error management for increased flash memory lifetime,” in 2012 IEEE 30th International Conference on Computer Design (ICCD), Sep. 2012, pp. 94–101. [3] S. Tanakamaru, C. Hung, and K. Takeuchi, “Highly reliable and low power ssd using asymmetric coding and stripe bitline-pattern elimination programming,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 85–96, Jan 2012. [4] Y. Deguchi and K. Takeuchi, “Word-line batch vth modulation of tlc nand flash memories for both write-hot and cold data,” in 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov 2017, pp. 161–164. [5] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared dram systems,” SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 63–74, Jun. 2008. [Online]. Available: http://doi.acm.org/10.1145/1394608.1382128 [6] ADVANTECH, company, Tech. Rep., 2016. [7] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulnerabilities in mlc nand flash memory programming: Experimental analysis, exploits, and mitigation techniques,” in 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Feb 2017, pp. 49–60. [8] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim, “Improving performance and lifetime of nand storage systems using relaxed program sequence,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016, pp. 1–6. [9] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel architecture for high-performance nand flash-based storage system,” J. Syst. Archit., vol. 53, no. 9, pp. 644–658, Sep. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.sysarc.2007.01.010 [10] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: A flash translation layer employing demand-based selective caching of page-level address mappings,” SIGPLAN Not., vol. 44, no. 3, pp. 229–240, Mar. 2009. [Online]. Available: http://doi.acm.org/10.1145/1508284.1508271 [11] D. Park, B. Debnath, and D. Du, “Cftl: A convertible flash translation layer adaptive to data access patterns,” in Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS ’10. New York, NY, USA: ACM, 2010, pp. 365–366. [Online]. Available: http://doi.acm.org/10.1145/1811039.1811089 [12] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min, and Yookun Cho, “A space-efficient flash translation layer for compactflash systems,” IEEE Transactions on Consumer Electronics, vol. 48, no. 2, pp. 366–375, May 2002. [13] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song, “A log buffer-based flash translation layer using fully-associative sector translation,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 3, Jul. 2007. [Online]. Available: http://doi.acm.org/10.1145/1275986.1275990 [14] H. Cho, Dongkun Shin, and Y. I. Eom, “Kast: K-associative sector translation for nand flash memory in real-time systems,” in 2009 Design, Automation Test in Europe Conference Exhibition, April 2009, pp. 507–512. [15] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “Last: Locality-aware sector translation for nand flash memory-based storage systems,” SIGOPS Oper. Syst. Rev., vol. 42, no. 6, pp. 36–42, Oct. 2008. [Online]. Available: http://doi.acm.org/10.1145/1453775.1453783 [16] A. C. Patthak, “Error correcting codes: Local testing, list decoding, and applications,” Ph.D. dissertation, Austin, TX, USA, 2007, aAI3290894. [17] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characterization, mitigation, and recovery in flash-memory-based solid-state drives,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1666–1704, Sep. 2017. [18] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3d nand flash memory lifetime by tolerating early retention loss and process variation,” in Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems, ser. SIGMETRICS ’18. New York, NY, USA: ACM, 2018, pp. 106–106. [Online]. Available: http://doi.acm.org/10.1145/3219617.3219659 [19] K. Mizoguchi, T. Takahashi, S. Aritome, and K. Takeuchi, “Data-retention characteristics comparison of 2d and 3d tlc nand flash memories,” in 2017 IEEE International Memory Workshop (IMW), May 2017, pp. 1–4. [20] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile ssd: Trading flash memory nonvolatility to improve storage system performance for enterprise applications,” in IEEE International Symposium on HighPerformance Comp Architecture, Feb 2012, pp. 1–10. [21] X. Jimenez, D. Novo, and P. Ienne, “Wear unleveling: Improving NAND flash lifetime by balancing page endurance,” in Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST 14). Santa Clara, CA: USENIX, 2014, pp. 47–59. [Online]. Available:https://www.usenix.org/conference/fast14/technicalsessions/presentation/jimenez [22] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data retention in mlc nand flash memory: Characterization, optimization, and recovery,” in 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Feb 2015, pp. 551–563. [23] 48GB TLC NAND flash memory, Micron Technology, mT29F384G08EBCBBJ4.
|