[1] R. Nagarajan, M. Filer, Y. Fu ; M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects, ” IEEE/OSA Journal of Optical Communications and Networking, vol. 10 , no. 7, pp. 25-36, 2018.
[2] P. Dong, J. Lee, Y.-K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-Channel 100-Gb/s Per Channel Discrete Multitone Modulation Using Silicon Photonic Integrated Circuits,” Journal of Lightwave Technology, vol. 34, no. 1, pp. 79-84, 2016.
[3] P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Optics Express, vol. 20, no. 6, pp. 6163-6169, 2012.
[4] J. Notaros, C. V. Poulton, M. Raval, and M. R. Watts, “Near-Field-Focusing Integrated Optical Phased Arrays, ” Journal of Lightwave Technology, vol. 36, no. 24, pp. 5912-5920, 2018.
[5] H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process, ” Optics Express vol. 23, no. 5, pp. 6509-6519, 2015.
[6] H. Hashemi, “Large-Scale Monolithic Optical Phased Arrays, ” presented at the Optical Fiber Communication Conference (OFC), paper Tu3E.5, San Diego, USA, 2019.
[7] Intel, “Intel® Silicon Photonics 100G PSM4 Optical Transceiver Brief,” https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-psm4-qsfp28-brief.html
[8] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Optics Letter, vol. 42, no. 1, pp. 21-24, 2017.
[9] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Optics Letter, vol. 42, no. 20, pp. 4091-4094, 2017.
[10] M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011.
[11] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
[12] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[13] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013.
[14] A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008.
[15] V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt Express, vol. 22, no. 17, pp. 21037-50, Aug 25, 2014.
[16] T. Mogami, T. Horikawa, K. Kinoshita, Y. Hagihara, J. Ushida, M. Tokushima, J. Fujikata, S. Takahashi, T. Shimizu, A. Ukita, K. Takemura, M. Kurihara, K. Yashiki, D. Okamoto, Y. Suzuki, Y. Sobu, S.-H. Jeong, Y. Tanaka, T. Nakamura, and K. Kurata “1.2 Tbps/cm2 enabling silicon photonics IC technology based on 40-nm generation platform,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4701-4712, 2018.
[17] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s monolithic optical transmitter with micro-ring modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[18] M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Optics Express, vol. 24, no. 5, pp. 5026-5038, 2016.
[19] G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Optics Express, vol. 14, no. 24, pp. 11622-11630, 2006.
[20] F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 615-627, 2007.
[21] 林政傑, “以矽光子平台實現可調光交織器, ” 國立臺灣科技大學碩士論文, 2016.[22] P. Tomas, “8-channel Integrated LAN-WDM Demultiplexers with Novel Design of Grating Assisted Couplers, ” 國立臺灣科技大學碩士論文, 2016.
[23] 黃棋鴻, “利用矽光子製程實現光被動元件, ” 國立臺灣科技大學碩士論文, 2018.
[24] M. Hammood, A. Mistry, M. Ma, L. Chrostowski, and N. A. F. Jaeger, “Compact contra-directional-coupler-based filters for CWDM applications,” in IEEE 15th International Conference on Group IV Photonics (GFP), pp. 129-130, Cancun, Mexico, 2018.
[25] W. Shi1, H. Yun, C. Lin, X. Wang, Y. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” Conference on Lasers and Electro-Optics (CLEO), paper CTu3F.5, San Jose, CA, USA, 2013.
[26] B, Naghdi and L. R. Chen, “Subwavelength-grating-based 4-channel add-drop multiplexers in silicon photonics,” in IEEE 15th International Conference on Group IV Photonics (GFP), pp. 97-98, Cancun, Mexico, 2018.
[27] B. Naghdi, and L. R. Chen, “Silicon photonic contradirectional couplers using subwavelength grating waveguides,” Optics Express, vol. 24,no. 20, pp. 23429-23438, 2016.
[28] T. Paatzsch, I. Smaglinski, and S. Kr¨uger, "Compact Optical Multiplexers for LAN WDM," IEEE 802.3ba Task Force, July, 2008.
[29] M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Optics Letters, vol. 26, no. 3, pp. 2528-2534, 2018.
[30] M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Optics Letters, vol. 42, no. 13, pp. 2563-2566, 2017.
[31] Y.-J. Hung, C.-J. Wu, T.-H. Chen, T.-H. Yen, and Y.-C. Liang, “Superior temperature-sensing performance in cladding-modulated Si waveguide gratings,” Journal of Lightwave Technology, vol. 34, no. 18, 2016.
[32] L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging : principles and applications,” Journal of Lightwave Technology, vol. 13, no. 4, pp. 1-3, 2013/01/01, 1995.
[33] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1996.
[34] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
[35] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York: McGraw Hill Higher Education, 1996.
[36] R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Optics Express, vol. 23, no. 8, pp. 10573-10588, 2015.