(100.24.122.117) 您好!臺灣時間:2021/04/12 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊家亘
研究生(外文):Chia-Hsuan Yang
論文名稱:利用矽光子技術實現八通道分波多工器與光學天線設計
論文名稱(外文):Realization of 8-Channel Demultiplexer and Design of Optical Antenna with Silicon Photonics Technology
指導教授:李三良李三良引用關係
指導教授(外文):San-Liang Lee
口試委員:李三良徐世祥何文章洪勇智
口試委員(外文):San-Liang LeeShih-Hsiang HsuWEN-JENG HOYung-Jr Hung
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:矽光子光學雷達波長分波多工器
外文關鍵詞:Silicon photonicsLidarWavelength Division Multiplexer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽光子積體電路擁有高頻寬及高速傳輸之優點,可將此應用於資料高速傳輸上,也可應用於光學雷達上,可以擁有比微波更高的感測解析度。本論文將分析並量測光通訊用的八通道分波多工器以及設計光學雷達所需的光學天線。
首先,將本實驗室透過比利時微電子研究中心所提供之矽光子製程,在絕緣層覆矽基板上製作八通道分波多工器改良版本,並進行量測及分析,探討造成實驗與模擬設計結果不同的原因,發現製程誤差會導致濾出波段之中心波長改變,我們將考慮製程所影響的誤差再重新進行計算與模擬,其所得結果之趨勢與量測相符。
此外,本論文利用台積電標準CMOS 90 nm及IMEC製程進行光學天線之模擬,成功設計透過具週期性側壁結構型波導來達到發射角0度及均勻出光的500 μm光學天線,且由FDTD模擬方法得到遠場中的發散角之半峰全寬為0.12度,並將此設計成功下線。
Silicon photonics circuits have the advantages of high-bandwidth and high-speed transmission. We can apply this technology to high-speed data transmission as well as the light detection and ranging (Lidar) can provide optical sensing with higher resolution than microwave. This thesis will investigate the eight-channel demultiplexers for optical communication and the optical phase arrays for Lidar applications.
Firstly, we analyze and measure the improved version of the eight-channel demultiplexers that were designed on the silicon-on-insulator (SOI) platform and fabricated by IMEC multi-project-wafer (MPW) services. We investigate the possible causes for the difference between the measured and simulation results. It is found that the fabrication error on the subwavelength gratings can change the center wavelength and channel spacing of the filter bands. The recalculation and simulation with the measured grating shape is consistent with the measured results.
We also design and simulate the optical phase arrays that includes optical splitting devices and an array of optical antenna based on the TSMC’s CMOS 90-nm and IMEC’s process. The designed 500-μm long optical antenna with a periodic loaded side-grating structure can achieve an emission angle of 0 degrees and uniform light output. The FWHM of the main beam is 0.12° in θ direction, and the design is taped out for fabrication successfully.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 研究動機與元件介紹 1
1-1 前言 1
1-2 研究動機 2
1-3 絕緣層覆矽平台 3
1-4 標準互補式金氧半平台 4
1-5 光柵理論介紹 5
1-6 論文架構 6
第二章 元件結構介紹 7
2-1 光柵耦合器 7
2-2 八通道分波多工器 8
2-3 光學天線 10
2-4 多模干涉耦合器 12
第三章 元件模擬設計 14
3-1 模擬方法介紹 14
3-1-1 有限時域差分法 14
3-1-2 有限特徵模態法 16
3-2 光柵耦合器 17
3-3 八通道分波多工器 19
3-4 光學相控陣 22
3-4-1 光學天線 23
3-4-2 光學天線陣列 39
3-4-3 多模干涉耦合器 41
3-4-4 晶片佈局 43
第四章 元件量測結果 45
4-1 量測系統架構 45
4-2 光電積體電路後製程 47
4-3 光柵耦合器分析 50
4-4 八通道分波多工器分析 52
4-5 多模干涉耦合器分析 65
第五章 結論與未來發展 67
5-1 成果與討論 67
5-2 未來發展方向 68
參考資料 69
[1] R. Nagarajan, M. Filer, Y. Fu ; M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects, ” IEEE/OSA Journal of Optical Communications and Networking, vol. 10 , no. 7, pp. 25-36, 2018.
[2] P. Dong, J. Lee, Y.-K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-Channel 100-Gb/s Per Channel Discrete Multitone Modulation Using Silicon Photonic Integrated Circuits,” Journal of Lightwave Technology, vol. 34, no. 1, pp. 79-84, 2016.
[3] P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Optics Express, vol. 20, no. 6, pp. 6163-6169, 2012.
[4] J. Notaros, C. V. Poulton, M. Raval, and M. R. Watts, “Near-Field-Focusing Integrated Optical Phased Arrays, ” Journal of Lightwave Technology, vol. 36, no. 24, pp. 5912-5920, 2018.
[5] H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process, ” Optics Express vol. 23, no. 5, pp. 6509-6519, 2015.
[6] H. Hashemi, “Large-Scale Monolithic Optical Phased Arrays, ” presented at the Optical Fiber Communication Conference (OFC), paper Tu3E.5, San Diego, USA, 2019.
[7] Intel, “Intel® Silicon Photonics 100G PSM4 Optical Transceiver Brief,” https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-psm4-qsfp28-brief.html
[8] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Optics Letter, vol. 42, no. 1, pp. 21-24, 2017.
[9] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Optics Letter, vol. 42, no. 20, pp. 4091-4094, 2017.
[10] M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011.
[11] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
[12] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[13] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013.
[14] A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008.
[15] V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt Express, vol. 22, no. 17, pp. 21037-50, Aug 25, 2014.
[16] T. Mogami, T. Horikawa, K. Kinoshita, Y. Hagihara, J. Ushida, M. Tokushima, J. Fujikata, S. Takahashi, T. Shimizu, A. Ukita, K. Takemura, M. Kurihara, K. Yashiki, D. Okamoto, Y. Suzuki, Y. Sobu, S.-H. Jeong, Y. Tanaka, T. Nakamura, and K. Kurata “1.2 Tbps/cm2 enabling silicon photonics IC technology based on 40-nm generation platform,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4701-4712, 2018.
[17] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s monolithic optical transmitter with micro-ring modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[18] M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Optics Express, vol. 24, no. 5, pp. 5026-5038, 2016.
[19] G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Optics Express, vol. 14, no. 24, pp. 11622-11630, 2006.
[20] F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 615-627, 2007.
[21] 林政傑, “以矽光子平台實現可調光交織器, ” 國立臺灣科技大學碩士論文, 2016.
[22] P. Tomas, “8-channel Integrated LAN-WDM Demultiplexers with Novel Design of Grating Assisted Couplers, ” 國立臺灣科技大學碩士論文, 2016.
[23] 黃棋鴻, “利用矽光子製程實現光被動元件, ” 國立臺灣科技大學碩士論文, 2018.
[24] M. Hammood, A. Mistry, M. Ma, L. Chrostowski, and N. A. F. Jaeger, “Compact contra-directional-coupler-based filters for CWDM applications,” in IEEE 15th International Conference on Group IV Photonics (GFP), pp. 129-130, Cancun, Mexico, 2018.
[25] W. Shi1, H. Yun, C. Lin, X. Wang, Y. Wang, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon CWDM demultiplexers using contra-directional couplers,” Conference on Lasers and Electro-Optics (CLEO), paper CTu3F.5, San Jose, CA, USA, 2013.
[26] B, Naghdi and L. R. Chen, “Subwavelength-grating-based 4-channel add-drop multiplexers in silicon photonics,” in IEEE 15th International Conference on Group IV Photonics (GFP), pp. 97-98, Cancun, Mexico, 2018.
[27] B. Naghdi, and L. R. Chen, “Silicon photonic contradirectional couplers using subwavelength grating waveguides,” Optics Express, vol. 24,no. 20, pp. 23429-23438, 2016.
[28] T. Paatzsch, I. Smaglinski, and S. Kr¨uger, "Compact Optical Multiplexers for LAN WDM," IEEE 802.3ba Task Force, July, 2008.
[29] M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Optics Letters, vol. 26, no. 3, pp. 2528-2534, 2018.
[30] M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Optics Letters, vol. 42, no. 13, pp. 2563-2566, 2017.
[31] Y.-J. Hung, C.-J. Wu, T.-H. Chen, T.-H. Yen, and Y.-C. Liang, “Superior temperature-sensing performance in cladding-modulated Si waveguide gratings,” Journal of Lightwave Technology, vol. 34, no. 18, 2016.
[32] L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging : principles and applications,” Journal of Lightwave Technology, vol. 13, no. 4, pp. 1-3, 2013/01/01, 1995.
[33] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1996.
[34] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
[35] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. New York: McGraw Hill Higher Education, 1996.
[36] R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Optics Express, vol. 23, no. 8, pp. 10573-10588, 2015.
電子全文 電子全文(網際網路公開日期:20240822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔