(100.26.179.251) 您好!臺灣時間:2021/04/21 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏佐穎
研究生(外文):Zuo-Ying Wei
論文名稱:空間向量調變補償法達成無轉軸角/速度偵測元件的內藏式永磁同步電動機驅動系統的研製
論文名稱(外文):Design and Implementation of a Sensorless IPMSM Drive System Using Space Vector Modulation Compensation Method
指導教授:劉添華
指導教授(外文):Tian-Hua Liu
口試委員:徐國鎧楊勝明楊士進劉益華
口試委員(外文):Kuo-Kai ShyuSheng-Ming YangShih-Chin YangYi-Hua Liu
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:140
中文關鍵詞:內藏式永磁同步電動機轉軸角度估測電流斜率法空間向量延伸及補償法預測型控制
外文關鍵詞:IPMSMrotor position estimationcurrent slope methodspace vector extension and compensation methodpredictive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討空間向量調變補償法的內藏式永磁同步電動機驅動系統的轉軸角/速度估測以及預測型速度控制器的設計。文中經由計算三相定子的電流斜率,再由電流斜率估測轉軸角度及轉軸速度。由於電動機在靜止或低轉速時,空間向量脈波寬度調變的主動電壓向量導通區間甚短,無法準確地計算電流斜率,達成轉軸角度估測。故本文使用三段式空間向量脈波寬度延伸及補償的方式,增加主動電壓向量的導通時間,避免產生過大的電流諧波量。實驗結果說明本文所提方法,可以改善傳統磁滯電流控制器所造成電流諧波量過高的缺點。
為了增進電動機的暫態響應、追蹤能力及加載性能,文中使用預測型速度控制器應用於無轉軸偵測元件的驅動系統。利用性能指標函數,推導出預測型的最佳控制量。
本文使用數位信號處理器TMS-320F-2808作為控制核心,執行相關的控制及估測法則,實驗結果驗證本文所提方法的正確性及可行性。
This thesis investigates the rotor position/speed estimation using space-vector modulation compensation method and the predictive speed-loop controller design for interior permanent magnet synchronous motor drive systems. By computing the three-phase current slopes, the rotor position and speed of the motor can be estimated. The duty cycles of the active vectors could be too small; as a result, it is impossible to obtain the current-slopes of the active vectors when the motor is operated at standstill or low-speed operating region. An extension and compensation of three-level space-vector pulse width modulation method is proposed here. By using this method, the duty cycle of the active voltage vector is increased and the current harmonics are not obviously increased. The experimental results show that the current-slope computing method can be employed to estimate the rotor position/speed to improve the performance of the traditional hysteresis current control method, which causes too much current harmonics.
To improve the transient response, tracking ability and load disturbance rejection capability, the predictive speed-loop controller is used for the sensorless IPMSM drive systems. An predictive optimal control input is derived by using the performance index for the whole drive system.
A digital signal processor, TMS-320F-2808 is used as a control center to execute the control and estimation algorithms. Experimental results show the correctness and feasibility of the proposed methods.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
符號索引 XII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.3研究目的 7
1.4大綱 8
第二章 內藏式永磁同步電動機 9
2.1簡介 9
2.2結構及特性 9
2.3數學模型 13
第三章 變頻器及空間向量調變方法 21
3.1簡介 21
3.2變頻器 21
3.3空間向量脈波寬度調變 22
3.4空間向量延伸及補償 26
3.5閉迴路驅動系統 29
第四章 轉軸角度及速度估測 30
4.1簡介 30
4.2轉軸角度估測的原理 30
4.3 轉軸角度估測方法的實現 44
4.4 初始角度估測的極性判別 51
4.5轉軸速度估測方法 53
第五章 控制器設計 55
5.1簡介 55
5.2基本原理 56
5.3預測型速度迴路控制器 58
第六章 系統研製 69
6.1簡介 69
6.2硬體電路 70
6.2.1數位信號處理器 71
6.2.2閘極驅動電路 73
6.2.3三相變頻器 74
6.2.4電流感測電路 75
6.2.5編碼器電路 76
6.2.6電源電路 76
6.3軟體程式設計 77
6.3.1主程式 77
6.3.2中斷程式 78
第七章 實測結果 83
7.1簡介 83
7.2實測 85
第八章 結論及未來研究方向 115
參考文獻 116
[1] S. K. Kommuri, M. Defoort, H. R. Karimi, and K. C. Veluvolu, “A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7671-7681, Dec. 2016.
[2] J. Lara, J. Xu, and A. Chandra, “Effects of rotor position error in the performance of field-oriented-controlled PMSM drives for electric vehicle traction applications,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 4738-4751, Aug. 2016.
[3] J. J. Guedes, M. F. Castoldi, and A. Goedtel, “Temperature influence snalysis on parameter estimation of induction motors using,” IEEE Latin America Transactions, vol. 14, no. 9, pp. 4097-4105, Sep. 2016.
[4] C. Li, G. Wang, G. Zhang, D. Xu, and D. Xiao, “Saliency-based sensorless control for SynRM drives with suppression of position estimation error,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 5839-5879, Aug. 2019.
[5] S. C. Agarlita, I. Boldea, and F. Blaabjerg, “High frequency injection assisted active flux based sensorless vector control of reluctance synchronous motors with experiments from zero speed,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 1931-1939, Nov. 2012.
[6] Z. Chen, J. Gao, F. Wang, Z. Ma, Z. Zhang, and R. Kennel, “Sensorless control for SPMSM with concentrated windings using multisignal injection method,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6624-6634, Dec. 2014.
[7] G. Wang, R. Yang, and D. Xu, “DSP-based control of sensorless IPMSM drives for wide-speed-range operation,” IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 720-727, Feb. 2013.
[8] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1226-1241, May 2014.
[9] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092-2100, June 2010.
[10] Z. Wang, K. Lu, and F. Blaabjerg, “A simple startup strategy based on current regulation for back-emf-based sensorless control of PMSM,” IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3817-3825, Aug. 2012.
[11] J. M. Liu, and Z. Q. Zhu, “Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 2, pp. 171-180, June 2014.
[12] R. Ni, D. Xu, F. Blaabjerg, K. Lu, G. Wang, and G. Zhang, “Square-wave voltage injection algorithm for PMSM position sensorless control with high robustness to voltage errors,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5425-5437, July 2017.
[13] J. Lu, Y. Hu, X. Zhang, Z. Wang, J. Liu, and C. Gan, “High-frequency voltage injection sensorless control technique for IPMSMs fed by a three-phase four-switch inverter with a single current sensor,” IEEE Transactions on Mechatronics, vol. 23, no. 2, pp. 758-768, Apr. 2018.
[14] J. L. Chen, S. K. Tseng, and T. H. Liu, “Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique,” IET Electric Power Applications, vol. 6, iss. 8, pp. 533–544, Jan. 2012.
[15] N. C. Park, and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Electric Power Applications, vol. 8, iss. 2, pp. 68–75, Sep. 2013.
[16] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1054-1061, Aug. 2002.
[17] M. Tursini, R. Petrella, and F. Parasiliti, “Initial rotor position estimation method for PM motors,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1630-1640, Dec. 2003.
[18] Y. Zhao, Z. Zhang, W. Qiao, and L. Wu, “An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines,” IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4412-4422, Aug. 2015.
[19] J. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, Aug. 2007.

[20] M. Y. Wei, and T. H. Liu, “A high-performance sensorless position control system of a synchronous reluctance motor using dual current-slope estimating technique,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3411-3426, Sep. 2012.
[21] Y. Hua, M. Sumner, G. Asher, Q. Gao, and K. Saleh, “Improved sensorless control of a permanent magnet machine using fundamental pulse width modulation excitation,” IET Electric Power Applications, vol. 5, no. 4, pp. 359–370, July 2010.
[22] Q. Gao, G. M. Asher, M. Sumner, and P. Makyš, “Position estimation of ac machines over a wide frequency range based on space vector PWM excitation,” IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 1001-1011, Aug. 2007.
[23] X. Luo, Q. Tang, A. Shen, H. Shen, and J. Xu, “A combining FPE and additional test vectors hybrid strategy for IPMSM sensorless control,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6104-6113, July 2018.
[24] M. A. Vogelsberger, S. Grubic, T. G. Habetler, and T. M. Wolbank, “Using PWM-induced transient excitation and advanced signal processing for zero-speed sensorless control of ac machines,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 365-374, Jan. 2010.
[25] M. X. Bui, D. Guan, D. Xiao, and M. F. Rahman, “A modified sensorless control scheme for interior permanent magnet synchronous motor over zero to rated speed range using current derivative measurements,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 102-113, Jan. 2019.
[26] G. Wang, J. Kuang, N. Zhao, G. Zhang, and D. Xu, “Rotor position estimation of PMSM in low-speed region and standstill using zero-voltage vector injection,” IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7948-7958, Sep. 2018.
[27] A. N. Tiwari1, P. Agarwal, and S. P. Srivastava, “Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive,” IET Electric Power Applications, vol. 4, no. 2, pp. 101–108, Apr. 2009.
[28] Y. P. Yang, and M. T. Peng, “A surface-mounted permanent-magnet motor with sinusoidal pulsewidth-modulation-shaped magnets,” IEEE Transactions on Magnetics, vol. 55, no. 1, pp. 7948-7958, Jan. 2019.
[29] W. Liang, J. Wang, P. C. K. Luk, W. Fang, and W. Fei, “Analytical modeling of current harmonic components in PMSM drive with voltage-source inverter by SVPWM technique,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 673-680, Sep. 2014.
[30] D. F. Chen, and T. H. Liu, “Optimal controller design for a matrix converter based surface mounted PMSM drive system,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 1034-1046, July 2003.
[31] W. C. Wang, T. H. Liu, and Y. Syaifudin, “Model predictive controller for a micro-PMSM-based five-finger control system,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3666-3676, June 2016.



[32] Y. Chen, T. H. Liu, C. F. Hsiao, and C. K. Lin, “Implementation of adaptive inverse controller for an interior permanent magnet synchronous motor adjustable speed drive system based on predictive current control,” IET Electric Power Applications, vol. 9, no. 1, pp. 60–70, July 2014.
[33] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, Mar. 2013.
[34] F. M. Mondrag´on, V. M. H. Guzm´an, and J. R. Res´endiz, “Robust speed control of permanent magnet synchronous motors using two-degrees-of-freedom control,” IEEE Transactions on Industry Electronics, vol. 65, no. 8, pp. 6099-6108, Aug. 2018.
[35] V. Petrovic´, A. M. Stankovic´, and V. Blaˇsko, “Position estimation in salient PM synchronous motors based on PWM excitation transients,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 835-843, June 2003.
電子全文 電子全文(網際網路公開日期:20240731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔