跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃文
研究生(外文):Wen Huang
論文名稱:使用故障群集技術以提昇嵌入式記憶體之良率與可靠度
論文名稱(外文):Fault Clustering Techniques for Enhancing Fabrication Yield and Reliability of Embedded Memories
指導教授:呂學坤
指導教授(外文):Shyue-Kung Lu
口試委員:李進福王乃堅洪進華黃樹林呂學坤
口試委員(外文):Jin-Fu LiNai-Jian WangJin-Hua HongShu-Lin HwangShyue-Kung Lu
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:嵌入式記憶體良率可靠度故障群集
外文關鍵詞:Embedded MemoryYieldReliabilityFault Clustering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
長久以來,內建自我修復技術與錯誤修正碼是時常被拿來保護記憶體的技術,用以提升記憶體的良率與可靠度,然而它們彼此的功用卻不相同。一般來說內建自我修復技術是用在修復流程以修復硬錯誤,錯誤修正碼是用在記憶體正常操作模式下,以修復軟錯誤,而近年來錯誤修正碼也漸漸地被使用在修復階段,以提升記憶體的良率。瑕疵一般都是隨機落在記憶體陣列上,而採用內建自我修復技術修復記憶體時,單一備用元件能修復的故障細胞往往有限,為了達到高修復率,需要足夠數量的備用元件,若數量不足的話,則內建自我修復的修復會失敗。
為了解決此缺點,基於位址重映射的故障群集技術在此篇被提出,用以在內建備用分析之前先改變記憶體陣列裡故障細胞的邏輯位址,使故障細胞彼此落在同個列或是同個字上,如此一來可以提升備用元件能修復故障細胞,也可進一步提升記憶體良率,而本篇也採用錯誤修正碼修復剩餘的故障細胞,可使得良率再往上提升。為了實現故障群集技術,易實現於電路的啟發式 (Heuristic) 的故障群集演算法被提出,故障群集演算法會依序 (Sequential) 地改變每個記憶體區塊的邏輯位址,使記憶體區塊與區塊之間的故障細胞能達成上述之群集效果,其架構可以容易地與內建自我修復技術的電路做結合。除此之外,本篇開發了用於模擬修復率的模擬器和推估硬體成本的模型,而根據實驗結果,本篇提出之故障群集技術可以大幅提升修復率且其產生之硬體成本只增加不到2%。
Built-in self-repair (BISR) techniques and error correction code (ECC) have been widely used for improving the yield and reliability of embedded memories. The main targets of these two schemes are hard faults and transient faults respectively. Recently, ECC also became a popular solution to correct hard errors and then further improve the fabrication yield of memories. In general, defects are randomly distributed in memories. To reach high repair rate, sufficient spares are required to repair the faults. If the number of spares is less than expected, the repair would be failed.
In order to cure this drawback, efficient logical to physical address remapping techniques are proposed in this paper, called fault clustering techniques. The goal is to cluster the faulty cells into the same row or the same word, so that we can improve the efficiency of spares and the fabrication yield. To implement the fault clustering techniques, heuristic fault clustering algorithms suitable for built-in implementation are proposed to sequentially remap logical address for each memory bank. The corresponding built-in remapping analysis circuit is then derived. It can be easily integrated into the conventional built-in self-repair (BISR) module. A simulator is developed to evaluate the repair rate. According to experimental results, the repair rate can be improved significantly with negligible hardware overhead.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 簡介 1
1.1動機及背景 1
1.2組織架構 4
第二章 隨機存取記憶體內建自我測試、診斷和修復技術 5
2.1記憶體架構 5
2.2故障模型 6
2.3測試演算法 8
2.4內建自我測試 10
2.5內建自我診斷及修復 13
第三章 錯誤檢查及修正技術 16
3.1錯誤修正碼 16
3.1.1漢明碼 (Hamming Code) 16
3.1.2修正漢明碼 (Modified Hamming Code) 17
3.1.3蕭氏碼 (Hsiao Code) 17
3.2傳統結合錯誤修正碼與內建自我修復技術之測試與修復流程 19
第四章 內建故障群集技術 22
4.1內建故障群集基本概念 22
4.1.1列群集 (Row Clustering) 技術 24
4.1.2行群集 (Column Clustering) 技術 25
4.1.3混合型群集 (Hybrid Clustering) 技術 27
4.2內建故障群集演算法 28
4.3內建故障群集技術之硬體架構 39
4.4內建故障群集技術之測試與修復流程 43
第五章 實驗結果 46
5.1瑕疵分布與故障型態之設定 46
5.2修復率分析 48
5.3良率分析 53
5.4可靠度分析 56
5.5硬體成本分析 59
5.6超大型積體電路實現 64
第六章 結論與未來展望 66
6.1結論 66
6.2未來展望 66
參考文獻 67
[1] W. Kuo, W. T. K. Chien, and T. Kim, Reliability, Yield, and Stress Burn-in, Kluwer Academic Publishers, Boston, 1998.
[2] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993.
[3] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using redundant words,” in Proc. Int’l Test Conf. (ITC), pp. 995-1001, Oct. 2001.
[4] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hidaka, “A built-in self-repair analyzer (CRESTA) for embedded DRAMs,” in Proc. Int’l. Test Conf. (ITC), pp. 567-574, Oct. 2000.
[5] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu, “Built-in redundancy analysis for memory yield improvement,” IEEE Trans. Rel., vol. 52, no. 4, pp. 386–399, Dec. 2003.
[6] S. K. Lu, Y.-C. Tsai, C.-H. Hsu, K.-H Wang, “Efficient built-in redundancy analysis for embedded memories with 2-D redundancy,” IEEE Trans. VLSI System, vol. 14, NO. 1, pp. 34-42, 2006.
[7] T. W. Tseng, C. H. Wu, Y. J. Huang, J. F. Li, A. Pao, K. Chiu, and E. Chen, “A built-in self-repair scheme for multiport RAMs,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 355-360, May 2007.
[8] S.-K. Lu, C.-L. Yang, and H.-W. Lin, “Efficient BISR techniques for word-oriented embedded memories with hierarchical redundancy,” in Proc. IEEE/ACIS Int. Workshop Component-Based Soft. Eng., Soft. Arch. Reuse (ICIS-COMSAR), pp. 355–360, Jul. 2006.
[9] Y. T. J. Chen, J. F. Li, and T. W. Tseng, “Cost-efficient built-in redundancy analysis with optimal repair rate for RAMs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 6, pp. 930–940, June 2012.
[10] S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays,” IEEE Design and Test of Computers, vol. 4, no. 1, pp. 24-31, June 1987.
[11] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I: The three radiation sources,” IEEE Trans. Device and Materials Reliability, vol. 1, no. 1, pp. 17-22, Mar. 2001.
[12] D. C. Bossen, and M. Y. Hsiao, “A System Solution to the Memory Soft Error Problem,” IBM Journal of Research and Development, vol. 24, no. 3, pp. 390-397, May 1980.
[13] T. H. Wu, P. Y. Chen, M Lee, B. Y. Lin, C. W. Wu, C-H Tien, H. C. Lin, H. Chen, C. N. Peng, and M. J. Wang, “A memory yield improvement scheme combining built-in self-repair and error correction codes,” in Proc. Int’l Test Conference (ITC), pp. 5-8, Nov. 2012.
[14] T. Li et al., "Fault clustering technique for 3D memory BISR", Design Automation and Test in Europe Conference, pp560-565, Mar. 2017.
[15] M. L. Bushnell, and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits,” Kluwer Academic Publishers, 2000.
[16] O. Kebichi, and M. Nicolaidis, “A tool for automatic generation of BISTed and transparent BISTed RAMs,” Computer Design: VLSI in Computers and Processors, pp. 570–575, Oct. 1992.
[17] C. Cheng, C. T. Huang, J. R. Huang, C. W. Wu, C. J. Wey, and M. C. Tsai, “BRAINS: a BIST compiler for embedded memories,” in Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 299-307, Oct. 2000.
[18] S. Pateras, “IP for embedded diagnosis,” IEEE Design & Test of Computers, vol. 19, no. 3, pp. 44–53, May-June 2002.
[19] C. W. Wang, C. F. Wu, J. F. Li, C. W. Wu, T. Teng, K. Chiu, and H. P. Lin, “A built-in self-test and self-diagnosis scheme for embedded SRAM,” in Proc. Asian Test Symposium, pp. 45–50, Dec. 2000.
[20] A. J. van de Goor, and Z. Al-Ars, “Functional Memory Faults: A Formal Notation and a Taxonomy,” VLSI Test Symposium, pp. 281-289, 30 April-4 2000.
[21] L. M. Denq, R. F. Huang, C. W. Wu, Y. J. Chang, and W. C. Wu, “A parallel built-in diagnostic scheme for multiple embedded memories,” in Proc. Int’l Workshop on Memory Technology, Design and Testing, pp. 65–69, Aug. 2004.
[22] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system speeds test and repair of redundant memories,” Electronics, pp. 175-179, Jan. 1984.
[23] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Tech. J., vol. XXVI, no. 2, pp. 147-160, Apr. 1950.
[24] M. Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM Journal of Research and Development, vol. 14, no. 4, pp. 395-401, July 1970.
[25] C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield statistics,” Proceedings of the IEEE, vol. 71, no. 4, pp. 453-470, Apr. 1983.
[26] R. F. Huang, J. F. Li, J. C. Yeh, and C. W. Wu, “A simulator for evaluating redundancy analysis algorithms of repairable embedded memories,” in Proc. IEEE Int. Workshop Mem. Technol., Des. Testing (MTDT), pp. 68–73, July 2002.
[27] R. Nair, S. M. Thatte, and J. A. Abraham, “Efficient algorithms for testing SRAMs,” IEEE Trans. On Computer, vol. C-27, no. 6, pp. 572-576, June 1978.
[28] Wooheon Kang, Changwook Lee, Hyunyul Lim, and Sungho Kang, “ Optimized Built-In Self-Repair for Multiple Memories,” IEEE Transactions on VLSI Systems, vol. 24, no. 6, June 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊