(3.235.41.241) 您好!臺灣時間:2021/04/11 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾泓祥
研究生(外文):Hong-Siang Zeng
論文名稱:碳纖維複合材料於正交切削之犁切加工前期研究
論文名稱(外文):Preliminary investigation of tool wear and grinding force in orthogonal ploughing of woven CFPR composite
指導教授:郭俊良郭俊良引用關係
指導教授(外文):Chin-Liang Kuo
口試委員:鍾俊輝劉孟昆
口試委員(外文):Chun-Hui ChungMeng-Kun Liu
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:犁切刀尖半徑單因子測試法
外文關鍵詞:ploughingradius of cutting edgeone factor at atime
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
熱固型碳纖維強化聚酯於被切削過程中,因刀具磨耗所造成之刀具前間隙面(flank face)磨損(VB=300 μm)與刀尖半徑逐漸圓角化(edge rounding),剪切機制(shear criterion)逐漸弱化,而摩擦機制逐漸增強形成犁切加工。當剪切形成切屑之最小深度小於刀具加工深度時或刀尖半徑大於應力集中(Stress concentration)所需的最小半徑時,機制從剪力作工進入犁切與刨切之摩擦做功,因而劣化加工表面品質。本次實驗為使用適用於觀測犁切機制之磨耗設置,使用碳化鎢(cemented carbide)刀具對編織型碳纖維強化聚酯(carbon fiber reinforced plastics)進行正交犁切(orthogonal ploughing)磨耗測試。碳化鎢刀具圓角鈍化設定之刀尖半徑為69 μm,控制參數固定為切削速度(93.75 m/min)、進給率(0.016 mm/rev)。並在初始條件中加入預負載267.7 N,同時觀測在時間序列下之五個階段研磨磨耗試驗形成之演化結果,包含切削力與犁切力趨勢圖、刀具磨耗和刀尖半徑演化、前間隙面表面形貌並加以分析所加工之碳纖維強化聚酯表面之形貌。顯微組織影像則使用掃描式電子顯微鏡(SEM)進行擷取。當刀具持續磨耗(127.5 μm)後,前間隙面之粗糙度第一至五階段趨勢增加(Ra:0.9 μm-2.18 μm)與碳纖維強化聚酯加工面之粗糙度第一至三階段趨勢降低(0° Ra:1.91 μm-1.41μm, 90° Ra:1.68 μm-1.29 μm),而後第四、五階段增加。刀具前間隙面粗糙度與刀尖處不平整,使摩擦與犁切機制影響增加,使加工面出現如溝槽(groove)及樹酯撕裂(cracking)等現象。
Tool wear contributed to flank face wear (VB=300 μm) and cutting edge rounded when processing carbon fibre reinforced plastics. In the condition, shear criterion progressively replaced by ploughing criterion forming ploughing mechanism. Cutting thickness for chip forming lower than minimum or cutting edge radius more than minimum of cutting thickness trigging stress concentration would exchange shear force for friction force of ploughing and rubbing mechanism to apply work.Seriously, processed surface of work piece became deteriorating compared to the one formed by shear criterion. In this study, equipment was wearing set up suitable for grinding experiment. Besides, using cemented carbide cutting tool to orthogonal cutting and ploughing carbon fiber reinforced plastics reached wear test. Cemented carbide cutting tool’s cutting edge radius was set at 69 μm to simulated tool already rounded due to wear. Machining parameters were fixed, including cutting speed (93.75 m/min), feed rate (0.016 mm/rev).Additionally, initial condition concluded preload (267.7 N).Meanwhile, observing five stages of grinding test was for getting result of processing revolution sequentially.Results included trend chart of cutting force and ploughing force, tool wear, revolution of cutting edge radius, Surface topography of cutting tool flank face and surface topography of carbon fiber reinforced plastics. Microscopic structure was presented by image captured by scanning electron microscope.During the stages of ploughing test, flank surface roughness trend is from 0.9 μm to 2.18 μm. Transverse direction of carbon fiber reinforced plastics ‘roughness trend from 1.91 μm to 1.41 μm in first to third stage, and then roughness increased. It was mean that processing procedure became unstable gradually. In other word, cutting tool slipped on carbon fiber reinforced plastics gradually unstably. Relatively, ploughing and rubbing criterion’s influence increased.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 研究介紹 11
第二章 文獻回顧 13
2.1 碳纖維強化聚脂材料特性與加工現況 13
2.2 碳化鎢刀具材料特性 15
2.3 刀尖半徑與犁切特性 16
2.4 碳纖維之犁切力與犁切力學模型 19
2.5 刀具磨耗類型與表面完整性 26
2.6 碳纖維加工件之表面完整性 27
2.7 實驗設計與統計檢定分析 29
第三章 實驗工作 32
3.1 實驗材料 32
3.2 實驗刀具 33
3.3 實驗設備 34
3.3.1. 加工設備與治具 34
3.3.2. 研磨力量測位置說明 36
3.3.3. 研磨力量測 37
3.3.4. 刀具幾何量測 38
3.3.5. 刀具前間隙面磨耗量測方法 39
3.3.6. 刀具前間隙面磨耗量測 40
3.3.7. 碳纖維強化聚酯表面粗糙度量測 40
3.4 實驗設計 41
第四章 結果與討論 43
4.1 研磨力趨勢分析 43
4.1.1. 第一階段研磨力分析 43
4.1.2. 第二階段研磨力分析 44
4.1.3. 第三階段研磨力分析 45
4.1.4. 第四階段研磨力分析 46
4.1.5. 第五階段研磨力分析 47
4.1.6. 五個階段穩態下犁切力綜觀比較 49
4.2 刀具磨耗分析 51
4.2.1. 前間隙面磨耗量測 51
4.2.2. 前間隙面形貌分析 53
4.2.3. 前間隙面顯微組織分析 56
4.2.4. 刀尖表面形貌與幾何分析 59
4.3 碳纖維強化聚酯研磨面形貌分析 63
4.3.1. 碳纖維強化聚酯加工面表面粗糙度分析 63
4.3.2. 碳纖維強化聚酯研磨面之三維形貌分析 64
4.3.3. 碳纖維強化聚酯研磨表面顯微組織分析 68
第五章 結論與未來展望 71
5.1 文獻回顧總結 71
5.2 研究結果總結 71
5.3 未來展望 73
參考文獻 75
附錄一 83
附錄二 84
[1] C. Bonnet, G. Poulachon, J. Rech, Y. Girard, J.P. Costes, CFRP drilling: Fundamental study of local feed force and consequences on hole exit damage, International Journal of Machine Tools and Manufacture, 94 (2015) 57-64.
[2] H. Yu, H. Shi, S. Chen, A novel multi-cell CFRP/AA6061 hybrid tube and its structural multiobjective optimization, Composite Structures, 209 (2019) 579-589.
[3] C. Santiuste, X. Soldani, M.H. Miguélez, Machining FEM model of long fiber composites for aeronautical components, Composite Structures, 92 (2010) 691-698.
[4] G. Santhanakrishnan, R. Krishnamurthy, S.K. Malhotra, Investigation into the machining of carbon-fibre-reinforced plastics with cemented carbides, Journal of Materials Processing Technology, 30 (1992) 263-275.
[5] X.M. Wang, L.C. Zhang, An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics, International Journal of Machine Tools and Manufacture, 43 (2003) 1015-1022.
[6] Y. Su, Z. Jia, B. Niu, G. Bi, Size effect of depth of cut on chip formation mechanism in machining of CFRP, Composite Structures, 164 (2017) 316-327.
[7] A. Abena, S.L. Soo, K. Essa, Modelling the orthogonal cutting of UD-CFRP composites: Development of a novel cohesive zone model, Composite Structures, 168 (2017) 65-83.
[8] M.V. Hosur, J. Alexander, U.K. Vaidya, S. Jeelani, A. Mayer, Studies on the off-axis high strain rate compression loading of satin weave carbon/epoxy composites, Composite Structures, 63 (2004) 75-85.
[9] V.L. Reis, C.V. Opelt, G.M. Cândido, M.C. Rezende, M.V. Donadon, Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates, Composite Structures, 203 (2018) 952-959.
[10] X. Chen, Y. Li, Z. Zhi, Y. Guo, N. Ouyang, The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates, Carbon, 61 (2013) 97-104.
[11] T. Schmack, T. Filipe, G. Deinzer, C. Kassapoglou, F. Walther, Experimental and numerical investigation of the strain rate-dependent compression behaviour of a carbon-epoxy structure, Composite Structures, 189 (2018) 256-262.
[12] J.L. Merino-Pérez, R. Royer, S. Ayvar-Soberanis, E. Merson, A. Hodzic, On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation, Composite Structures, 123 (2015) 161-168.
[13] S. Rawat, H. Attia, Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites, Wear, 267 (2009) 1022-1030.
[14] W. Grzesik, Machining of Hard Materials, in: J.P. Davim (Ed.) Machining: Fundamentals and Recent Advances, Springer London, London, 2008, pp. 97-126.
[15] G. Santhanakrishnan, R. Krishnamurthy, S.K. Malhotra, Machinability characteristics of fibre reinforced plastics composites, Journal of Mechanical Working Technology, 17 (1988) 195-204.
[16] X. Wang, C. Wang, X. Shen, F. Sun, Tribological behaviors of the diamond films sliding against the T800/X850 CFRP laminates, Wear, 418-419 (2019) 191-200.
[17] T. Kagnaya, C. Boher, L. Lambert, M. Lazard, T. Cutard, Microstructural analysis of wear micromechanisms of WC–6Co cutting tools during high speed dry machining, International Journal of Refractory Metals and Hard Materials, 42 (2014) 151-162.
[18] M. Masuda, Y. Kuroshima, Y. Chujo, Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials, Wear, 169 (1993) 135-140.
[19] C.F. Wyen, K. Wegener, Influence of cutting edge radius on cutting forces in machining titanium, CIRP Annals, 59 (2010) 93-96.
[20] D.S. Raj, L. Karunamoorthy, A new and comprehensive characterisation of tool wear in CFRP drilling using micro-geometry and topography studies on the cutting edge, Journal of Manufacturing Processes, 32 (2018) 839-856.
[21] Q. Shen, Z. Liu, Y. Hua, J. Zhao, W. Lv, A.U.H. Mohsan, Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM, Materials (Basel, Switzerland), 11 (2018) 1015.
[22] B. Denkena, J. Koehler, M. Rehe, Influence of the Honed Cutting Edge on Tool Wear and Surface Integrity in Slot Milling of 42CrMo4 Steel, Procedia CIRP, 1 (2012) 190-195.
[23] A. Popov, A. Dugin, Effect of uncut chip thickness on the ploughing force in orthogonal cutting, The International Journal of Advanced Manufacturing Technology, 76 (2015) 1937-1945.
[24] R. Stevenson, D.A. Stephenson, The Mechanical Behavior of Zinc During Machining, Journal of Engineering Materials and Technology, 117 (1995) 172-178.
[25] Y. Yuan, X. Jing, K.F. Ehmann, J. Cao, H. Li, D. Zhang, Modeling of cutting forces in micro end-milling, Journal of Manufacturing Processes, 31 (2018) 844-858.
[26] M. Malekian, S.S. Park, M.B.G. Jun, Modeling of dynamic micro-milling cutting forces, International Journal of Machine Tools and Manufacture, 49 (2009) 586-598.
[27] X. Lai, H. Li, C. Li, Z. Lin, J. Ni, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, International Journal of Machine Tools and Manufacture, 48 (2008) 1-14.
[28] L. Zhou, F.Y. Peng, R. Yan, P.F. Yao, C.C. Yang, B. Li, Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects, International Journal of Machine Tools and Manufacture, 97 (2015) 29-41.
[29] F.-j. Wang, J.-w. Yin, J.-w. Ma, Z.-y. Jia, F. Yang, B. Niu, Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates, The International Journal of Advanced Manufacturing Technology, 91 (2017) 3107-3120.
[30] Y.B. Guo, Y.K. Chou, The determination of ploughing force and its influence on material properties in metal cutting, Journal of Materials Processing Technology, 148 (2004) 368-375.
[31] R. Stevenson, The measurement of parasitic forces in orthogonal cutting, International Journal of Machine Tools and Manufacture, 38 (1998) 113-130.
[32] R.J. Schimmel, W.J. Endres, R. Stevenson, Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining, Journal of Manufacturing Science and Engineering, 124 (2002) 536-543.
[33] D.J. Waldorf, R.E. DeVor, S.G. Kapoor, A Slip-Line Field for Ploughing During Orthogonal Cutting, Journal of Manufacturing Science and Engineering, 120 (1998) 693-699.
[34] D.J. Waldorf, A Simplified Model for Ploughing Forces in Turning, Journal of Manufacturing Processes, 8 (2006) 76-82.
[35] X. Liu, R.E. DeVor, S.G. Kapoor, An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining, Journal of Manufactu
[36] J.P. Davim, F. Mata, V.N. Gaitonde, S.R. Karnik, Machinability Evaluation in Unreinforced and Reinforced PEEK Composites using Response Surface Models, Journal of Thermoplastic Composite Materials, 23 (2010) 5-18. ring Science and Engineering, 128 (2005) 474-481.
[37] Y. Karpat, O. Bahtiyar, B. Değer, Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates, International Journal of Machine Tools and Manufacture, 56 (2012) 79-93.
[38] A. Koplev, A. Lystrup, T. Vorm, The cutting process, chips, and cutting forces in machining CFRP, Composites, 14 (1983) 371-376.
[39] H. Hocheng, C.C. Tsao, The path towards delamination-free drilling of composite materials, Journal of Materials Processing Technology, 167 (2005) 251-264.
[40] D.H. Wang, M. Ramulu, D. Arola, Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate, International Journal of Machine Tools and Manufacture, 35 (1995) 1639-1648.
[41] A. Sahraie Jahromi, B. Bahr, An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites, Composites Science and Technology, 70 (2010) 2290-2297.
[42] A. Faraz, D. Biermann, K. Weinert, Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates, International Journal of Machine Tools and Manufacture, 49 (2009) 1185-1196.
[43] R.K. Kountanya, W.J. Endres, Flank Wear of Edge-Radiused Cutting Tools Under Ideal Straight-Edged Orthogonal Conditions, Journal of Manufacturing Science and Engineering, 126 (2004) 496-505.
[44] X. Wang, P.Y. Kwon, C. Sturtevant, D. Kim, J. Lantrip, Tool wear of coated drills in drilling CFRP, Journal of Manufacturing Processes, 15 (2013) 127-135.
[45] K.-H. Park, A. Beal, D. Kim, P. Kwon, J. Lantrip, Tool wear in drilling of composite/titanium stacks using carbide and polycrystalline diamond tools, Wear, 271 (2011) 2826-2835.
[46] Z. Qi, Y. Liu, W. Chen, An approach to predict the mechanical properties of CFRP based on cross-scale simulation, Composite Structures, 210 (2019) 339-347.
[47] L. Zhang, C. Ren, C. Ji, Z. Wang, G. Chen, Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites, Applied Surface Science, 366 (2016) 424-431.
[48] X.M. Wang, L.C. Zhang, An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics, International Journal of Machine Tools and Manufacture, 43 (2003) 1015-1022.
[49] Y. Chen, X. Guo, K. Zhang, D. Guo, C. Zhou, L. Gai, Study on the surface quality of CFRP machined by micro-textured milling tools, Journal of Manufacturing Processes, 37 (2019) 114-123.
[50] D. Wang, X. He, Z. Xu, W. Jiao, F. Yang, L. Jiang, L. Li, W. Liu, R. Wang, Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method, Materials (Basel, Switzerland), 10 (2017) 204.
[51] C. Kuo, Z. Li, C. Wang, Multi-objective optimisation in vibration-assisted drilling of CFRP/Al stacks, Composite Structures, 173 (2017) 196-209.
[52] S. Joshi, K. Rawat, B. A.S.S, A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP, Journal of Materials Processing Technology, 262 (2018) 521-531.
[53] M. Zimmermann, L. Heberger, F. Schneider, C. Effgen, J.C. Aurich, Investigation of Chip Formation and Workpiece Load When Machining Carbon-fiber-reinforced-polymer (CFRP), Procedia Manufacturing, 6 (2016) 124-131.
[54] L. Chen, K. Zhang, H. Cheng, Z. Qi, Q. Meng, A cutting force predicting model in orthogonal machining of unidirectional CFRP for entire range of fiber orientation, The International Journal of Advanced Manufacturing Technology, 89 (2017) 833-846.
[55] N. Cadorin, R. Zitoune, Wear signature on hole defects as a function of cutting tool material for drilling 三維 interlock composite, Wear, 332-333 (2015) 742-751.
[56] T. Yashiro, T. Ogawa, H. Sasahara, Temperature measurement of cutting tool and machined surface layer in milling of CFRP, International Journal of Machine Tools and Manufacture, 70 (2013) 63-69.
[57] X. Qu, C.F. Jeff Wu, One-factor-at-a-time designs of resolution V, Journal of Statistical Planning and Inference, 131 (2005) 407-416.
[58] D.J. Olive, Multiple Linear Regression, in: D.J. Olive (Ed.) Linear Regression, Springer International Publishing, Cham, 2017, pp. 17-83.
[59] V. Dragan, SOLID PARTICLE EROSION MODELS FOR TITANIUM AND ALUMINUM METAL MATRIX COMPOSITES, 2013.
電子全文 電子全文(網際網路公開日期:20240626)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔