[1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2] Prandtl, L., “Über Flüssigkeitsbewegung bei sehr kleiner Reibung.” Proc. Third Int. Math. Congr., Heidelberg, Germany, 1904, pp. 484-491.
[3] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[4] Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate Reynolds numbers,” Journal of Fluid Mechanics, Vol. 248, Mar. 1993, pp. 605-635.
[5] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171.
[6] Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, No. 14-15, 2001, pp. 1267-1289.
[7] Bearman, P. W. and Harvey, J. K., “Control of circular cylinder flow by the use of dimples,” AIAA Journal, Vol. 31, No. 10,1993, pp.1753-1756.
[8] Fiedler, H. E., “Control of free turbulent shear flows,” Flow Control-Fundamentals and Practices, edited by M. Gad-el-Hak, A. Pollard, and J. P. Bonnet, Springer-Verlag, Berlin, 1998, p.335-429.
[9] Gad-el-Hak, M., Flow Control-Passive, Active, and Reactive Flow Management, Cambridge University Press, New York, 2000.
[10] Ghee, T. A. and Leishman, J. G., “Unsteady circulation control aerodynamics of a circular cylinder with periodic jet blowing,” AIAA Journal, Vol. 30, No. 2, 1992, pp. 289-299.
[11] Strykowski, P. J. and Sreenivasan, K. R., “On the formation and suppression of vortex shedding at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 218, Sep. 1990, pp. 71-107.
[12] Wang, A. -B. and Chang, Y. -C., “Experimental investigation of suppression of vortex shedding from a circular cylinder,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, 1996, pp. 249-254.
[13] Sakamoto, H., Tan, K., and Haniu, H., “An optimum suppression of fluid forces by controlling a shear layer separated from a square Prism,” Journal of Fluids Engineering, Vol. 113, No. 2, 1991, pp. 183-189.
[14] Sakamoto, H. and Haniu, H., “Optimum suppression of fluid forces acting on a circular cylinder,” Journal of Fluids Engineering, Vol. 116, No. 2, 1994, pp. 221-227.
[15] Prasad, A. and Williamson, C. H. K., “A method for the reduction of bluff body drag,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, Jul-Oct 1997, pp. 155-167.
[16] Tsutsui, T. and Igarashi, T., “Drag reduction of a circular cylinder in an air-stream,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 527-541.
[17] Bouak, F. and Lemay, J., “Passive control of the aerodynamic forces acting on a circular cylinder,” Experimental Thermal and Fluid Science, Vol. 16, No. 1-2, 1998, pp. 112-121.
[18] Lienhard, J. H., Synopsis of lift, drag and vortex frequency data for rigid circular cylinders, Research Division Bulletion 300, Washington State University, 1966.
[19] Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, May 2006, pp. 321-352.
[20] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[21] Roshko, A, “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 124-132.
[22] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluid Mechanics, Vol. 6, No. 4, 1959, pp. 547-567.
[23] Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
[24] Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. 1, 1961, pp. 141-165.
[25] Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, No. 2, 1961, pp. 244-256.
[26] Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913, 1954.
[27] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[28] Dennis, S. C. R., Qiang, W., Coutanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, Mar 1993, pp. 605-635.
[29] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2,1996, pp. 159-171.
[30] Igarashi, T., Nobuaki, T., “Drag reduction of flat plate normal to airstream by flow control using a rod,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 359-376.
[31] Sichlichting, H. Boundary layer theory, 7th ed, Mcgraw-Hill, New York, 1993, p. 699.
[32] Flagan, R. C. and Seinfeld J. H., Fundamentals of air pollution engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, p.295-307.
[33] 張冠翔, 小圓柱尾流衝擊平板時的流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2017.[34] 張庭瑋, 平板受小圓柱尾流衝擊時之流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2018